Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Theory of the Piezoresistive Effect in p-Type 3C-SiC

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter qualitatively explains the piezoresistive effect in p-type 3C-SiC based on the hole transfer mechanism and the conduction effective mass change due to the deformation of energy band under strain. To explain this phenomenon, the ideas of energy band structure and band deformation of 3C-SiC are discussed. Furthermore, the description of piezoresistive coefficients are also presented in the rest of this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Olego, M. Cardona, P. Vogl, Pressure dependence of the optical phonons and transverse effective charge in 3 C-SiC. Phys. Rev. B 25(6), 3878 (1982)CrossRef D. Olego, M. Cardona, P. Vogl, Pressure dependence of the optical phonons and transverse effective charge in 3 C-SiC. Phys. Rev. B 25(6), 3878 (1982)CrossRef
2.
Zurück zum Zitat M. Wijesundara, R. Azevedo, Silicon Carbide Microsystems for Harsh Environments (Springer Science & Business Media, Berlin, 2011)CrossRef M. Wijesundara, R. Azevedo, Silicon Carbide Microsystems for Harsh Environments (Springer Science & Business Media, Berlin, 2011)CrossRef
3.
Zurück zum Zitat G.L. Harris, Properties of Silicon Carbide, vol. 13 (IET, London, 1995) G.L. Harris, Properties of Silicon Carbide, vol. 13 (IET, London, 1995)
4.
Zurück zum Zitat S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006)CrossRef S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006)CrossRef
5.
Zurück zum Zitat J.M. Ziman, Principle of the Theory of Solids (Cambridge University Press, London, 1964) J.M. Ziman, Principle of the Theory of Solids (Cambridge University Press, London, 1964)
6.
Zurück zum Zitat L.A. Hemstreet Jr., C.Y. Fong, Electronic band structure and optical properties of 3C-SiC, BP, and BN. Phys. Rev. B 6(4), 1464 (1972)CrossRef L.A. Hemstreet Jr., C.Y. Fong, Electronic band structure and optical properties of 3C-SiC, BP, and BN. Phys. Rev. B 6(4), 1464 (1972)CrossRef
7.
Zurück zum Zitat W.P. Eaton, J.H. Smith, Micromachined pressure sensors: review and recent developments. Smar. Mater. Struct. 6, 530–539 (1997)CrossRef W.P. Eaton, J.H. Smith, Micromachined pressure sensors: review and recent developments. Smar. Mater. Struct. 6, 530–539 (1997)CrossRef
8.
Zurück zum Zitat J.C. Wolfe, Summary of the Kronig–Penney electron. Am. J. Phys. 46, 1012 (1978)CrossRef J.C. Wolfe, Summary of the Kronig–Penney electron. Am. J. Phys. 46, 1012 (1978)CrossRef
9.
Zurück zum Zitat A.C.H. Rowe, Piezoresistance in silicon and its nanostructures. J. Mater. Res. 29(6), 731–744 (2014)CrossRef A.C.H. Rowe, Piezoresistance in silicon and its nanostructures. J. Mater. Res. 29(6), 731–744 (2014)CrossRef
10.
Zurück zum Zitat D.L. Pulfrey, Understanding Modern Transistors and Diodes (Cambridge University Press, London, 2010)CrossRef D.L. Pulfrey, Understanding Modern Transistors and Diodes (Cambridge University Press, London, 2010)CrossRef
11.
Zurück zum Zitat G.L. Bir, G.E. Pikus, in Symmetry and Strain-Induced Effects in Semiconductors, vol. 624, ed. by D. Louvish (Wiley, New York, 1974) G.L. Bir, G.E. Pikus, in Symmetry and Strain-Induced Effects in Semiconductors, vol. 624, ed. by D. Louvish (Wiley, New York, 1974)
12.
Zurück zum Zitat T. Toriyama, S. Sugiyama, Analysis of piezoresistance in p-type silicon for mechanical sensors. J. Microelectromech. Syst. 11(5), 598 (2002)CrossRef T. Toriyama, S. Sugiyama, Analysis of piezoresistance in p-type silicon for mechanical sensors. J. Microelectromech. Syst. 11(5), 598 (2002)CrossRef
13.
Zurück zum Zitat P. Kleimann, B. Semmache, M. Le Berre, D. Barbier, Stress-dependent hole effective masses and piezoresistive properties of p-type monocrystalline and polycrystalline silicon. Phys. Rev. B 57(15), 8966–8971 (1998)CrossRef P. Kleimann, B. Semmache, M. Le Berre, D. Barbier, Stress-dependent hole effective masses and piezoresistive properties of p-type monocrystalline and polycrystalline silicon. Phys. Rev. B 57(15), 8966–8971 (1998)CrossRef
14.
Zurück zum Zitat Y. Sun, S.E. Thompson, T. Nishida, Strain Effect in Semiconductor: Theory and Device Applications, 1st edn. (Springer, Berlin, 2009) Y. Sun, S.E. Thompson, T. Nishida, Strain Effect in Semiconductor: Theory and Device Applications, 1st edn. (Springer, Berlin, 2009)
15.
Zurück zum Zitat H.-P. Phan, D.V. Dao, K. Nakamura, S. Dimitrijev, N.-T. Nguyen, The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J. Microelectromech. Syst. 24(6), 1663–1677 (2015)CrossRef H.-P. Phan, D.V. Dao, K. Nakamura, S. Dimitrijev, N.-T. Nguyen, The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J. Microelectromech. Syst. 24(6), 1663–1677 (2015)CrossRef
16.
Zurück zum Zitat C. Kong, W. Wang, K. Liao, Y. Ma, S. Wang, L. Fang, The theoretical studies of piezoresistive effect in diamond films. Sci. China Ser. A Math. 45(1), 107–114 (2002) C. Kong, W. Wang, K. Liao, Y. Ma, S. Wang, L. Fang, The theoretical studies of piezoresistive effect in diamond films. Sci. China Ser. A Math. 45(1), 107–114 (2002)
17.
Zurück zum Zitat L. Fang, W.L. Wang, P.D. Ding, K.J. Liao, J. Wang, Study on the piezoresistive effect of crystalline and polycrystalline diamond under uniaxial strains. J. Appl. Phys. 86, 5185 (1999)CrossRef L. Fang, W.L. Wang, P.D. Ding, K.J. Liao, J. Wang, Study on the piezoresistive effect of crystalline and polycrystalline diamond under uniaxial strains. J. Appl. Phys. 86, 5185 (1999)CrossRef
18.
Zurück zum Zitat W. Lu, K. Zhang, X. Xe, Strain effects on the band structures of \(\beta \)-SiC. Phys. Condens. Matter 5, 883–890 (1993)CrossRef W. Lu, K. Zhang, X. Xe, Strain effects on the band structures of \(\beta \)-SiC. Phys. Condens. Matter 5, 883–890 (1993)CrossRef
19.
Zurück zum Zitat R. Rahimi, C.M. Miller, S. Raghavan, C.D. Stinespring, D. Korakakis, Electrical properties of strained nano-thin 3C-SiC/Si heterostructures. J. Phys. D Appl. Phys. 42, 055108 (2009)CrossRef R. Rahimi, C.M. Miller, S. Raghavan, C.D. Stinespring, D. Korakakis, Electrical properties of strained nano-thin 3C-SiC/Si heterostructures. J. Phys. D Appl. Phys. 42, 055108 (2009)CrossRef
20.
Zurück zum Zitat A.A. Barlian, W.T. Park, J.R. Mallon Jr., A.J. Rastergar, B.L. Pruit, Review: semiconductor the piezoresistive effect for microsystems. Proc. IEEE 97(3), 513–552 (2009)CrossRef A.A. Barlian, W.T. Park, J.R. Mallon Jr., A.J. Rastergar, B.L. Pruit, Review: semiconductor the piezoresistive effect for microsystems. Proc. IEEE 97(3), 513–552 (2009)CrossRef
21.
Zurück zum Zitat Y. Kanda, The piezoresistive effect of silicon. Sens. Actuators A 28, 83–91 (1991)CrossRef Y. Kanda, The piezoresistive effect of silicon. Sens. Actuators A 28, 83–91 (1991)CrossRef
22.
Zurück zum Zitat Y. Kanda, A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29(1), 64–70 (1982)CrossRef Y. Kanda, A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans. Electron Devices 29(1), 64–70 (1982)CrossRef
23.
Zurück zum Zitat J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, Berlin, 2013). ISBN 978-1-4614-8516-2CrossRef J.C. Doll, B.L. Pruitt, Piezoresistor Design and Applications (Springer, Berlin, 2013). ISBN 978-1-4614-8516-2CrossRef
24.
Zurück zum Zitat Y. Kanda, K. Yamamura, Four terminal gauge quasi circular and square diaphragm silicon pressure sensors. Sens. Actuators 19, 247–257 (1989)CrossRef Y. Kanda, K. Yamamura, Four terminal gauge quasi circular and square diaphragm silicon pressure sensors. Sens. Actuators 19, 247–257 (1989)CrossRef
25.
Zurück zum Zitat A. Mian, J.C. Suhling, R.C. Jaeger, The van der Pauw Stress Sensor. IEEE Sens. J. 6(2), (2006) A. Mian, J.C. Suhling, R.C. Jaeger, The van der Pauw Stress Sensor. IEEE Sens. J. 6(2), (2006)
26.
Zurück zum Zitat D.V. Dao, T. Toriyama, J. Wells, S. Sugiyama, Silicon piezoresistive six-degree of freedom micro force-moment sensor. Sens. Mater. 15, 113–135 (2002) D.V. Dao, T. Toriyama, J. Wells, S. Sugiyama, Silicon piezoresistive six-degree of freedom micro force-moment sensor. Sens. Mater. 15, 113–135 (2002)
27.
Zurück zum Zitat M.H. Bao, Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes, vol. 8 (Elsevier, Amsterdam, 2000) M.H. Bao, Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes, vol. 8 (Elsevier, Amsterdam, 2000)
Metadaten
Titel
Theory of the Piezoresistive Effect in p-Type 3C-SiC
verfasst von
Hoang-Phuong Phan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55544-7_2

Neuer Inhalt