Skip to main content

2020 | OriginalPaper | Buchkapitel

15. Thermal Efficiency Enhancement of Solar Parabolic Trough Collector Using Nanofluids: A Recent Review

verfasst von : Gopal Nandan

Erschienen in: Advances in Solar Power Generation and Energy Harvesting

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent studies on the potential of the nanofluids on the performance enhancement of the parabolic trough collectors seem to be pointing toward development of the next generation of the solar collectors having great potential to be used for co-generation with integrated solar thermal systems. To achieve it, most researchers are investigating the superior performance of non-conventional heat transfer fluids, such as the nanofluids. The present paper is an effort to review recent research efforts on the performance of parabolic trough collectors using nanofluids. Studies on the various properties of nanofluids seem to be suggesting the positive impact of these fluids in increasing the heat transfer characteristics. The concurrent studies carried out to use nanofluids in coupled solar thermal systems are likely to enhance the process of heat energy collection from the sun in a highly concentrating trough type collector. The objective of the current study is to report recent progress on thermal efficiency enhancement in the parabolic solar trough collector using nanofluids. Experimental and numerical simulation results have been covered by referring to recent research papers. This work will act as a valuable tool to future researchers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Xu, W. Chen, S. Deng, X. Zhang, S. Zhao, Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator. Nanomaterials 5, 2131–2147 (2015)CrossRef G. Xu, W. Chen, S. Deng, X. Zhang, S. Zhao, Performance evaluation of a nanofluid-based direct absorption solar collector with parabolic trough concentrator. Nanomaterials 5, 2131–2147 (2015)CrossRef
2.
Zurück zum Zitat R.V. Padilla, G. Demirkaya, D.Y. Goswami, E. Stefanakos, M.M. Rahman, Heat transfer analysis of parabolic trough solar receiver. Appl. Energy 88, 5097–5110 (2011)CrossRef R.V. Padilla, G. Demirkaya, D.Y. Goswami, E. Stefanakos, M.M. Rahman, Heat transfer analysis of parabolic trough solar receiver. Appl. Energy 88, 5097–5110 (2011)CrossRef
3.
Zurück zum Zitat G. Kumaresan, P. Sudhakar, R. Santosh, R. Velraj, Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renew. Sustain. Energy Rev. 77, 1363–1374 (2017)CrossRef G. Kumaresan, P. Sudhakar, R. Santosh, R. Velraj, Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renew. Sustain. Energy Rev. 77, 1363–1374 (2017)CrossRef
4.
Zurück zum Zitat R.A. Taylor, P.E. Phelan, T.P. Otanicar, C.A. Walker, M. Nguyen, S. Trimble, R. Prasher, Applicability of nanofluids in high flux solar collectors. J. Renew. Sustain. Energy 3, 023104 (2011)CrossRef R.A. Taylor, P.E. Phelan, T.P. Otanicar, C.A. Walker, M. Nguyen, S. Trimble, R. Prasher, Applicability of nanofluids in high flux solar collectors. J. Renew. Sustain. Energy 3, 023104 (2011)CrossRef
5.
Zurück zum Zitat M. Natarajana, R. T. Karuppa Raj, Y. R. Sekhar, T. Srinivas, P. Gupta, Numerical simulation of heat transfer characteristics in the absorber tube of parabolic trough collector with internal flow obstructions. ARPN J. Eng. Appl. Sci. 9, 674–681 (2014) M. Natarajana, R. T. Karuppa Raj, Y. R. Sekhar, T. Srinivas, P. Gupta, Numerical simulation of heat transfer characteristics in the absorber tube of parabolic trough collector with internal flow obstructions. ARPN J. Eng. Appl. Sci. 9, 674–681 (2014)
6.
Zurück zum Zitat K. Ajay, K. Lal, An experimental and cfd analysis of cuo-h2o (di) nanofluid based parabolic solar collector. IOSR J. Mech.Civ. Eng. 78–82 (2015) K. Ajay, K. Lal, An experimental and cfd analysis of cuo-h2o (di) nanofluid based parabolic solar collector. IOSR J. Mech.Civ. Eng. 78–82 (2015)
7.
Zurück zum Zitat K. Chaudhari, P. Walke, U. Wankhede, R. Shelke, An experimental investigation of a nanofluid (AL2O3H2O) based parabolic trough solar collectors. Br. J. Appl. Sci. Technol. 9, 551–557 (2015)CrossRef K. Chaudhari, P. Walke, U. Wankhede, R. Shelke, An experimental investigation of a nanofluid (AL2O3H2O) based parabolic trough solar collectors. Br. J. Appl. Sci. Technol. 9, 551–557 (2015)CrossRef
8.
Zurück zum Zitat K.S. Jafar, B. Sivaraman, Thermal performance of solar parabolic trough collector using nanofluids and the absorber with nail twisted tapes inserts. Int. Energy J. 14, 189–198 (2014) K.S. Jafar, B. Sivaraman, Thermal performance of solar parabolic trough collector using nanofluids and the absorber with nail twisted tapes inserts. Int. Energy J. 14, 189–198 (2014)
9.
Zurück zum Zitat L. Zhang, J. Lv, M. Bai, D. Guo, Effect of vibration on forced convection heat transfer for SiO2 water nanofluids. Heat Transfer Eng. 36, 452–461 (2014)CrossRef L. Zhang, J. Lv, M. Bai, D. Guo, Effect of vibration on forced convection heat transfer for SiO2 water nanofluids. Heat Transfer Eng. 36, 452–461 (2014)CrossRef
10.
Zurück zum Zitat E. Bellos, C. Tzivanidis, K.A. Antonopoulos, A detailed working fluid investigation for solar parabolic trough collectors. Appl. Therm. Eng. 114, 374–386 (2017)CrossRef E. Bellos, C. Tzivanidis, K.A. Antonopoulos, A detailed working fluid investigation for solar parabolic trough collectors. Appl. Therm. Eng. 114, 374–386 (2017)CrossRef
11.
Zurück zum Zitat A. Kasaeian, S. Daviran, R.D. Azarian, A. Rashidi, Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers. Manag. 89, 368–375 (2015)CrossRef A. Kasaeian, S. Daviran, R.D. Azarian, A. Rashidi, Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers. Manag. 89, 368–375 (2015)CrossRef
12.
Zurück zum Zitat V. Khullar, H. Tyagi, P.E. Phelan, T.P. Otanicar, H. Singh, R.A. Taylor, Solar energy harvesting using nanofluids-based concentrating solar collector. J. Nanotechnol. Eng. Med. 3, 031003 (2013)CrossRef V. Khullar, H. Tyagi, P.E. Phelan, T.P. Otanicar, H. Singh, R.A. Taylor, Solar energy harvesting using nanofluids-based concentrating solar collector. J. Nanotechnol. Eng. Med. 3, 031003 (2013)CrossRef
13.
Zurück zum Zitat K. Ajay, L. Kundan, Experimental and cfd investigation on the efficiency of parabolic solar collector involving AL2O3/H2O (di) nanofluid as a working fluid. Int. J. Renew. Energy Res. 6(2), 392–401 (2016) K. Ajay, L. Kundan, Experimental and cfd investigation on the efficiency of parabolic solar collector involving AL2O3/H2O (di) nanofluid as a working fluid. Int. J. Renew. Energy Res. 6(2), 392–401 (2016)
14.
Zurück zum Zitat E. Kaloudis, E. Papanicolaou, V. Belessiotis, Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew. Energy 97, 218–229 (2016)CrossRef E. Kaloudis, E. Papanicolaou, V. Belessiotis, Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew. Energy 97, 218–229 (2016)CrossRef
15.
Zurück zum Zitat A. Mwesigye, Z. Huan, J.P. Meyer, Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with cu-therminolVP-1 nanofluid. Energy Convers. Manag. 120, 449–465 (2016)CrossRef A. Mwesigye, Z. Huan, J.P. Meyer, Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with cu-therminolVP-1 nanofluid. Energy Convers. Manag. 120, 449–465 (2016)CrossRef
16.
Zurück zum Zitat A. Mwesigye, I.H. Ylmaz, J.P. Meyer, Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-therminol VP-1 nanofluid. Renew. Energy 119, 844–862 (2018)CrossRef A. Mwesigye, I.H. Ylmaz, J.P. Meyer, Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-therminol VP-1 nanofluid. Renew. Energy 119, 844–862 (2018)CrossRef
17.
Zurück zum Zitat A. Mwesigye, J.P. Meyer, Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl. Energy 193, 393–413 (2017)CrossRef A. Mwesigye, J.P. Meyer, Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl. Energy 193, 393–413 (2017)CrossRef
18.
Zurück zum Zitat R.V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, A.G. Quiroga, Exergy analysis of parabolic trough solar receiver. Appl. Therm. Eng. 67, 579–586 (2014)CrossRef R.V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, A.G. Quiroga, Exergy analysis of parabolic trough solar receiver. Appl. Therm. Eng. 67, 579–586 (2014)CrossRef
19.
Zurück zum Zitat S. Odeh, G. Morrison, M. Behnia, Modelling of parabolic trough direct steam generation solar collectors. Solar Energy 62, 395–406 (1998)CrossRef S. Odeh, G. Morrison, M. Behnia, Modelling of parabolic trough direct steam generation solar collectors. Solar Energy 62, 395–406 (1998)CrossRef
20.
Zurück zum Zitat O. Garcá-Valladares, N. Velázquez, Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers. Int. J. Heat Mass Transf. 52, 597–609 (2009)CrossRef O. Garcá-Valladares, N. Velázquez, Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers. Int. J. Heat Mass Transf. 52, 597–609 (2009)CrossRef
21.
Zurück zum Zitat P. Daniel, Y. Joshi, A.K. Das, Numerical investigation of parabolic trough receiver performance with outer vacuum shell. Solar Energy 85, 1910–1914 (2011)CrossRef P. Daniel, Y. Joshi, A.K. Das, Numerical investigation of parabolic trough receiver performance with outer vacuum shell. Solar Energy 85, 1910–1914 (2011)CrossRef
22.
Zurück zum Zitat M. Chandrasekar, S. Suresh, T. Senthilkumar, Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids a review. Renew. Sustain. Energy Rev. 16, 3917–3938 (2012)CrossRef M. Chandrasekar, S. Suresh, T. Senthilkumar, Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids a review. Renew. Sustain. Energy Rev. 16, 3917–3938 (2012)CrossRef
23.
Zurück zum Zitat T. Sokhansefat, A. Kasaeian, F. Kowsary, Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew. Sustain. Energy Rev. 33, 636–644 (2014)CrossRef T. Sokhansefat, A. Kasaeian, F. Kowsary, Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew. Sustain. Energy Rev. 33, 636–644 (2014)CrossRef
24.
Zurück zum Zitat Y. Wang, Q. Liu, J. Lei, H. Jin, Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. Int. J. Heat Mass Transf. 82, 236–249 (2015)CrossRef Y. Wang, Q. Liu, J. Lei, H. Jin, Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. Int. J. Heat Mass Transf. 82, 236–249 (2015)CrossRef
25.
Zurück zum Zitat Y. Wang, J. Xu, Q. Liu, Y. Chen, H. Liu, Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid. Appl. Therm. Eng. 107, 469–478 (2016)CrossRef Y. Wang, J. Xu, Q. Liu, Y. Chen, H. Liu, Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid. Appl. Therm. Eng. 107, 469–478 (2016)CrossRef
26.
Zurück zum Zitat Y.L. He, J. Xiao, Z.-D. Cheng, Y.-B. Tao, A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew. Energy 36, 976–985 (2011)CrossRef Y.L. He, J. Xiao, Z.-D. Cheng, Y.-B. Tao, A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew. Energy 36, 976–985 (2011)CrossRef
27.
Zurück zum Zitat M. Islam, M.A. Karim, S.C. Saha, S. Miller, P.K.D.V. Yarlagadda, Development of empirical equations for irradiance profile of a standard parabolic trough collector using monte carlo ray tracing technique. Adv. Mater. Res. 860–863, 180–190 (2013)CrossRef M. Islam, M.A. Karim, S.C. Saha, S. Miller, P.K.D.V. Yarlagadda, Development of empirical equations for irradiance profile of a standard parabolic trough collector using monte carlo ray tracing technique. Adv. Mater. Res. 860–863, 180–190 (2013)CrossRef
28.
Zurück zum Zitat R. Davarnejad, M. Jamshidzadeh, CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow. Eng. Sci. Technol. Int. J. 18, 536–542 (2015) R. Davarnejad, M. Jamshidzadeh, CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow. Eng. Sci. Technol. Int. J. 18, 536–542 (2015)
29.
Zurück zum Zitat T. Sokhansefat, A. Kasaeian, M.J. Abbaspour, M. Sokhansefat, Numerical study of heat transfer enhancement by using Al2O3/synthetic oil nanofluid in a parabolic trough collector tube. World Acad. Sci. Eng. Technol. 69, 1154–1159 (2012) T. Sokhansefat, A. Kasaeian, M.J. Abbaspour, M. Sokhansefat, Numerical study of heat transfer enhancement by using Al2O3/synthetic oil nanofluid in a parabolic trough collector tube. World Acad. Sci. Eng. Technol. 69, 1154–1159 (2012)
30.
Zurück zum Zitat S.E. Ghasemi, A.A. Ranjbar, Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study. J. Mol. Liq. 222, 159–166 (2016)CrossRef S.E. Ghasemi, A.A. Ranjbar, Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study. J. Mol. Liq. 222, 159–166 (2016)CrossRef
31.
Zurück zum Zitat M. Kumar, D. Patel, V. Sehrawat, T. Gupta, Experimental and cfd analysis of Cuo-H2O (di) nano fluid based parabolic solar trough collector. Int. J. Innovative Res. Sci. Eng. Technol. 5 (2016) M. Kumar, D. Patel, V. Sehrawat, T. Gupta, Experimental and cfd analysis of Cuo-H2O (di) nano fluid based parabolic solar trough collector. Int. J. Innovative Res. Sci. Eng. Technol. 5 (2016)
32.
Zurück zum Zitat A.M. de Oliveira Siqueira, P.E.N. Gomes, L. Torrezani, E.O. Lucas, G.M. da Cruz Pereira, Heat transfer analysis and modeling of a parabolic trough solar collector: an analysis. Energy Procedia 57, 401–410 (2014) A.M. de Oliveira Siqueira, P.E.N. Gomes, L. Torrezani, E.O. Lucas, G.M. da Cruz Pereira, Heat transfer analysis and modeling of a parabolic trough solar collector: an analysis. Energy Procedia 57, 401–410 (2014)
33.
Zurück zum Zitat W. Huang, P. Hu, Z. Chen, Performance simulation of a parabolic trough solar collector. Sol. Energy 86, 746–755 (2012)CrossRef W. Huang, P. Hu, Z. Chen, Performance simulation of a parabolic trough solar collector. Sol. Energy 86, 746–755 (2012)CrossRef
34.
Zurück zum Zitat P.M. Zadeh, T. Sokhansefat, A. Kasaeian, F. Kowsary, A. Akbarzadeh, Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy 82, 857–864 (2015)CrossRef P.M. Zadeh, T. Sokhansefat, A. Kasaeian, F. Kowsary, A. Akbarzadeh, Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid. Energy 82, 857–864 (2015)CrossRef
35.
Zurück zum Zitat M. Abid, T.A.H. Ratlamwala, U. Atikol, Performance assessment of parabolic dish and parabolic trough solar thermal power plant using nanofluids and molten salts. Int. J. Energy Res. 40, 550–563 (2015)CrossRef M. Abid, T.A.H. Ratlamwala, U. Atikol, Performance assessment of parabolic dish and parabolic trough solar thermal power plant using nanofluids and molten salts. Int. J. Energy Res. 40, 550–563 (2015)CrossRef
36.
Zurück zum Zitat Wani, N.A., Nandan, G.: Modelling of solar parabolic trough collector considering unsymmetrical heat flux. In: 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). No. 526–530, IEEE (2019) Wani, N.A., Nandan, G.: Modelling of solar parabolic trough collector considering unsymmetrical heat flux. In: 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). No. 526–530, IEEE (2019)
37.
Zurück zum Zitat S.E. Ghasemi, G.R.M. Ahangar, Numerical analysis of performance of solar parabolic trough collector with cu-water nanofluid. Int. J. Nano Dimension 5(3), 233–240 (2014) S.E. Ghasemi, G.R.M. Ahangar, Numerical analysis of performance of solar parabolic trough collector with cu-water nanofluid. Int. J. Nano Dimension 5(3), 233–240 (2014)
38.
Zurück zum Zitat A. Mwesigye, Z. Huan, Comparative thermal performance of a parabolic trough receiver with Cu-therminol®vp-1, Ag-therminol®vp-1 and Al2O3—therminol®vp-1 nanofluids, in Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition IMECE2016 (ASME, ed.), (2016, Phoenix, Arizona, USA, November 2016) A. Mwesigye, Z. Huan, Comparative thermal performance of a parabolic trough receiver with Cu-therminol®vp-1, Ag-therminol®vp-1 and Al2O3—therminol®vp-1 nanofluids, in Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition IMECE2016 (ASME, ed.), (2016, Phoenix, Arizona, USA, November 2016)
39.
Zurück zum Zitat N. Basbous, M. Taqi, N. Belouaggadia, Numerical study of a parabolic trough collector using a nanofluid. Asian J. Curr. Eng. Maths 4, 40–44 (2015) N. Basbous, M. Taqi, N. Belouaggadia, Numerical study of a parabolic trough collector using a nanofluid. Asian J. Curr. Eng. Maths 4, 40–44 (2015)
40.
Zurück zum Zitat E. Bellos, C. Tzivanidis, K. Antonopoulos, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew. Energy 94, 213–222 (2016)CrossRef E. Bellos, C. Tzivanidis, K. Antonopoulos, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew. Energy 94, 213–222 (2016)CrossRef
41.
Zurück zum Zitat A. Mwesigye, J.P. Meyer, Heat transfer performance of a parabolic trough receiver using SWCNTs-therminolVP-1 nanofluids, in Volume 8: Heat Transfer and Thermal Engineering (ASME, 2017) A. Mwesigye, J.P. Meyer, Heat transfer performance of a parabolic trough receiver using SWCNTs-therminolVP-1 nanofluids, in Volume 8: Heat Transfer and Thermal Engineering (ASME, 2017)
42.
Zurück zum Zitat E. Bellos, C. Tzivanidis, Parametric investigation of nanofluids utilization in parabolic trough collectors. Therm. Sci. Eng. Prog. 2, 71–79 (2017) E. Bellos, C. Tzivanidis, Parametric investigation of nanofluids utilization in parabolic trough collectors. Therm. Sci. Eng. Prog. 2, 71–79 (2017)
43.
Zurück zum Zitat A. Mwesigye, Z. Huan, J.P. Meyer, Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oilal 2 o 3 nanofluid. Appl. Energy 156, 398–412 (2015)CrossRef A. Mwesigye, Z. Huan, J.P. Meyer, Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oilal 2 o 3 nanofluid. Appl. Energy 156, 398–412 (2015)CrossRef
Metadaten
Titel
Thermal Efficiency Enhancement of Solar Parabolic Trough Collector Using Nanofluids: A Recent Review
verfasst von
Gopal Nandan
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3635-9_15