Skip to main content

2009 | OriginalPaper | Buchkapitel

13. Thermal Interface Materials

verfasst von : Ravi Prasher, PhD, Chia-Pin Chiu, PhD

Erschienen in: Materials for Advanced Packaging

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing electronic device performance has historically been accompanied by increasing power and increasing on-chip power density both of which present a cooling challenge. Thermal Interface Material (TIM) plays a key role in reducing the package thermal resistance and the thermal resistance between the electronic device and the external cooling components. This chapter reviews the progress made in the TIM development in the past five years. Rheology based modeling and design is discussed for the widely used polymeric TIMs. The recently emerging technology of nanoparticles and nanotubes is also discussed for TIM applications. This chapter also includes TIM testing methodology and concludes with suggestion for the future TIM development directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.M. Yovanovich, and E.E. Marotta, “Thermal Spreading and Contact Resistances,” in Heat Transfer Handbook, A. Bejan and A.D. Kraus eds., John Wiley & Sons, Hoboken, New Jersey, 261–395, 2003 M.M. Yovanovich, and E.E. Marotta, “Thermal Spreading and Contact Resistances,” in Heat Transfer Handbook, A. Bejan and A.D. Kraus eds., John Wiley & Sons, Hoboken, New Jersey, 261–395, 2003
2.
Zurück zum Zitat C.V. Madhusudana, Thermal Contact Conductance, Springer-Veralag, New York, 1996 C.V. Madhusudana, Thermal Contact Conductance, Springer-Veralag, New York, 1996
3.
Zurück zum Zitat A. Iwabuchi, T. Shimizu, Y. Yoshino, T. Abe, K. Katagiri, I. Nitta, and K. Sadamori, “The Development of a Vikers-Type Hardness Tester for Cryogenic Temperatures down to 4.2 K,” Cryogenics, 36(2), 75–81, 1996CrossRef A. Iwabuchi, T. Shimizu, Y. Yoshino, T. Abe, K. Katagiri, I. Nitta, and K. Sadamori, “The Development of a Vikers-Type Hardness Tester for Cryogenic Temperatures down to 4.2 K,” Cryogenics, 36(2), 75–81, 1996CrossRef
4.
Zurück zum Zitat M.A. Lambert, and L.S. Fletcher, “Thermal Contact Conductance of Non-flat, Rough, Metallic Coated Metals,” Journal of Heat Transfer, 124, 405–412, 2002CrossRef M.A. Lambert, and L.S. Fletcher, “Thermal Contact Conductance of Non-flat, Rough, Metallic Coated Metals,” Journal of Heat Transfer, 124, 405–412, 2002CrossRef
5.
Zurück zum Zitat R. Prasher, “Surface Chemistry and Characteristic Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials,” Journal of Heat Transfer, 123, 969–975, 2001CrossRef R. Prasher, “Surface Chemistry and Characteristic Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials,” Journal of Heat Transfer, 123, 969–975, 2001CrossRef
6.
Zurück zum Zitat R. Mahajan, C-P. Chiu, and G. Chrysler, “Cooling a Chip,” Proceedings of IEEE, 94(8), 1476–1486, 2006CrossRef R. Mahajan, C-P. Chiu, and G. Chrysler, “Cooling a Chip,” Proceedings of IEEE, 94(8), 1476–1486, 2006CrossRef
7.
Zurück zum Zitat A. Watwe, and R. Prasher, “Spreadsheet Tool for Quick-turn 3D Numerical Modeling of Package Thermal Performance with Non-Uniform Die Heating,” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Paper No. 2-16-7-5, New York, November 11–16, 2001 A. Watwe, and R. Prasher, “Spreadsheet Tool for Quick-turn 3D Numerical Modeling of Package Thermal Performance with Non-Uniform Die Heating,” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, Paper No. 2-16-7-5, New York, November 11–16, 2001
8.
Zurück zum Zitat J. Torresola, G. Chrysler, C. Chiu, R. Mahajan, D. Grannes, R. Prasher, and A. Watwe, “Density Factor Approach to Representing Die Power Map on Thermal Management,” IEEE Transactions on Advanced Packaging, 28(4), 659–664, 2005CrossRef J. Torresola, G. Chrysler, C. Chiu, R. Mahajan, D. Grannes, R. Prasher, and A. Watwe, “Density Factor Approach to Representing Die Power Map on Thermal Management,” IEEE Transactions on Advanced Packaging, 28(4), 659–664, 2005CrossRef
9.
Zurück zum Zitat R. Mahajan, C-P. Chiu, and R. Prasher, “Thermal Interface Materials: A Brief Review of Design Characteristics and Materials,” Electronics Cooling, 10(1), 2004 R. Mahajan, C-P. Chiu, and R. Prasher, “Thermal Interface Materials: A Brief Review of Design Characteristics and Materials,” Electronics Cooling, 10(1), 2004
10.
Zurück zum Zitat R.S. Prasher, “Thermal Interface Materials: Historical Perspective, Status and Future Directions,” Proceedings of IEEE, 98(8), 1571–1586, 2006CrossRef R.S. Prasher, “Thermal Interface Materials: Historical Perspective, Status and Future Directions,” Proceedings of IEEE, 98(8), 1571–1586, 2006CrossRef
11.
Zurück zum Zitat R.S. Prasher, P. Koning, J. Shipley, and A. Devpura, “Dependence of Thermal Conductivity and Mechanical Rigidity of Particle Laden Polymeric Thermal Interface Materials on Particle Volume Fraction,” Journal of Electronics Packaging, 125(3), 386–391, 2003CrossRef R.S. Prasher, P. Koning, J. Shipley, and A. Devpura, “Dependence of Thermal Conductivity and Mechanical Rigidity of Particle Laden Polymeric Thermal Interface Materials on Particle Volume Fraction,” Journal of Electronics Packaging, 125(3), 386–391, 2003CrossRef
12.
Zurück zum Zitat R.S. Prasher, J. Shipley, S. Prstic, P. Koning, and J-L. Wang, “Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials,” Journal of Heat Transfer, 125(6), 1170–1177, 2003CrossRef R.S. Prasher, J. Shipley, S. Prstic, P. Koning, and J-L. Wang, “Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials,” Journal of Heat Transfer, 125(6), 1170–1177, 2003CrossRef
13.
Zurück zum Zitat R.S. Prasher, “Rheology Based Modeling and Design of Particle Laden Polymeric Thermal Interface Material,” IEEE Transactions on Component and Packaging Technologies, 28(2), 230–237, 2005CrossRef R.S. Prasher, “Rheology Based Modeling and Design of Particle Laden Polymeric Thermal Interface Material,” IEEE Transactions on Component and Packaging Technologies, 28(2), 230–237, 2005CrossRef
14.
Zurück zum Zitat R.S. Prasher, and J.C. Matayabus, “Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Materials,” IEEE Transactions on Components and Packaging Technology, 27(4), 702–709, 2004CrossRef R.S. Prasher, and J.C. Matayabus, “Thermal Contact Resistance of Cured Gel Polymeric Thermal Interface Materials,” IEEE Transactions on Components and Packaging Technology, 27(4), 702–709, 2004CrossRef
15.
Zurück zum Zitat R. Prasher, and P. Phelan, “Microscopic and Macroscopic Thermal Contact Resistances of Pressed Mechanical Contacts,” Journal of Applied Physics, 100, 063538, 2006CrossRef R. Prasher, and P. Phelan, “Microscopic and Macroscopic Thermal Contact Resistances of Pressed Mechanical Contacts,” Journal of Applied Physics, 100, 063538, 2006CrossRef
16.
Zurück zum Zitat Y. He, “Rapid Thermal Conductivity Measurement with a Hot Disk Sensor: Part 1. Theoretical Considerations,” Proceedings of the 30th North American Thermal Analysis Society Conference, Sept. 23–25, 2002, Pitsburgh, PA, USA, 499–504, 2002 Y. He, “Rapid Thermal Conductivity Measurement with a Hot Disk Sensor: Part 1. Theoretical Considerations,” Proceedings of the 30th North American Thermal Analysis Society Conference, Sept. 23–25, 2002, Pitsburgh, PA, USA, 499–504, 2002
17.
Zurück zum Zitat A. Sepehr, and M. Sahimi, “Elastic Properties of Three-Dimensional Percolation Networks with Stretching and Bond-Bending Forces,” Physical Review B, 38(10), 7173–7176, 1988CrossRef A. Sepehr, and M. Sahimi, “Elastic Properties of Three-Dimensional Percolation Networks with Stretching and Bond-Bending Forces,” Physical Review B, 38(10), 7173–7176, 1988CrossRef
18.
Zurück zum Zitat A.V. Shenoy, “Rheology of Filled Polymer System,” Kluwer Academic Publishers, MA, USA, pp. 1–390, 1999 A.V. Shenoy, “Rheology of Filled Polymer System,” Kluwer Academic Publishers, MA, USA, pp. 1–390, 1999
19.
Zurück zum Zitat T.L. Tansley, and D.S. Maddison, “Conductivity Degradation in Oxygen Polypyrrole,” Journal of Applied Physics, 69(11), 7711–7713, 1991CrossRef T.L. Tansley, and D.S. Maddison, “Conductivity Degradation in Oxygen Polypyrrole,” Journal of Applied Physics, 69(11), 7711–7713, 1991CrossRef
20.
Zurück zum Zitat C-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42, 93–100, 2002CrossRef C-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42, 93–100, 2002CrossRef
21.
Zurück zum Zitat L.S. Pritchard, P.P. Acarnley, and C.M. Johnson, “Effective Thermal Conductivity of Porous Solder Layers,” IEEE Transactions on Components and Packaging Technologies, 27(2), 259–267, 2004CrossRef L.S. Pritchard, P.P. Acarnley, and C.M. Johnson, “Effective Thermal Conductivity of Porous Solder Layers,” IEEE Transactions on Components and Packaging Technologies, 27(2), 259–267, 2004CrossRef
22.
Zurück zum Zitat X. Hu, L. Jiang, and K. E. Goodson, “Thermal Characterization of Eutectic Alloy Thermal Interface Materials with Void-like Inclusions”, Proceedings of Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 98–103, March 9–11, 2004, San Jose, CA, USA X. Hu, L. Jiang, and K. E. Goodson, “Thermal Characterization of Eutectic Alloy Thermal Interface Materials with Void-like Inclusions”, Proceedings of Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 98–103, March 9–11, 2004, San Jose, CA, USA
23.
Zurück zum Zitat P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters, 87(21), 215502-1215502-4, 2001CrossRef P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters, 87(21), 215502-1215502-4, 2001CrossRef
24.
Zurück zum Zitat J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fisher, “Thermal Properties of Carbon Nanotubes and Nantube-based Materials,” Applied Physics A: Materials Science and Processing, 74, 339–343, 2002CrossRef J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fisher, “Thermal Properties of Carbon Nanotubes and Nantube-based Materials,” Applied Physics A: Materials Science and Processing, 74, 339–343, 2002CrossRef
25.
Zurück zum Zitat M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, “Carbon Nantube Composites for Thermal Management,” Applied Physics Letters, 80(2), 2767–2769, 2002CrossRef M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, “Carbon Nantube Composites for Thermal Management,” Applied Physics Letters, 80(2), 2767–2769, 2002CrossRef
26.
Zurück zum Zitat E.T. Thostenson, Z. Ren, and T.-W. Chou, “Advances in the Science and Technology,” Composite Science and Technology, 61, 1899–1912, 2001CrossRef E.T. Thostenson, Z. Ren, and T.-W. Chou, “Advances in the Science and Technology,” Composite Science and Technology, 61, 1899–1912, 2001CrossRef
27.
Zurück zum Zitat C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, “Thermal Conductivity Improvement of Silicone Elastomer with Carbon Nanotube Loading,” Applied Physics Letters, 84(21), 4248–4250, 2004CrossRef C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, “Thermal Conductivity Improvement of Silicone Elastomer with Carbon Nanotube Loading,” Applied Physics Letters, 84(21), 4248–4250, 2004CrossRef
28.
Zurück zum Zitat C.-W. Nan, G. Liu, Y. Lin, and M. Li, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites,” Applied Physics Letters, 85(16), 3549–3551, 2004CrossRef C.-W. Nan, G. Liu, Y. Lin, and M. Li, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites,” Applied Physics Letters, 85(16), 3549–3551, 2004CrossRef
29.
Zurück zum Zitat S. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. OZisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski , “Interfacial Heat Flow in Carbon Nanotube Suspensions,” Nature Materials, 2, 731–734, 2003CrossRef S. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. OZisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski , “Interfacial Heat Flow in Carbon Nanotube Suspensions,” Nature Materials, 2, 731–734, 2003CrossRef
30.
Zurück zum Zitat R.S. Prasher, “Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes,” Physical Review B, 77, 075424, 2008CrossRef R.S. Prasher, “Thermal Boundary Resistance and Thermal Conductivity of Multiwalled Carbon Nanotubes,” Physical Review B, 77, 075424, 2008CrossRef
31.
Zurück zum Zitat X. Hu, L. Jiang, and K.E. Goodson, “Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions”, 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System, June 1–4, 2004, Las Vegas, NV, USA X. Hu, L. Jiang, and K.E. Goodson, “Thermal Conductance Enhancement of Particle-Filled Thermal Interface Materials Using Carbon Nanotube Inclusions”, 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic System, June 1–4, 2004, Las Vegas, NV, USA
32.
Zurück zum Zitat J. Xu, and T.S. Fisher, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Arrays,” 2004 Inter Society Conference on Thermal Phenomena, Las Vegas, 549–555, 2004 J. Xu, and T.S. Fisher, “Enhanced Thermal Contact Conductance Using Carbon Nanotube Arrays,” 2004 Inter Society Conference on Thermal Phenomena, Las Vegas, 549–555, 2004
33.
Zurück zum Zitat X. Hu, A. Padilla, J. Xu, T.S. Fisher, and K.E. Goodson, “3-Omega Measurements Vertically Oriented Carbon Nanotubes on Silicon,” Journal of Heat Transfer, 128, 1109–1113, 2006CrossRef X. Hu, A. Padilla, J. Xu, T.S. Fisher, and K.E. Goodson, “3-Omega Measurements Vertically Oriented Carbon Nanotubes on Silicon,” Journal of Heat Transfer, 128, 1109–1113, 2006CrossRef
34.
Zurück zum Zitat J. Xu, and T.S. Fisher, “Thermal Contact Conductance Enhancement with Carbon Nanotube Arrays,” 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, Nov. 13–20, Paper number IMECE2004-60185, 2004 J. Xu, and T.S. Fisher, “Thermal Contact Conductance Enhancement with Carbon Nanotube Arrays,” 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, Nov. 13–20, Paper number IMECE2004-60185, 2004
35.
Zurück zum Zitat T. Tong, Y. Zhao, L. Delzeit, Al. Kashani, M. Meyyappan, and A. Majumdar, Dense Vertically Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials, IEEE Transactions on Components and Packaging Technologies, 30(1), 92–100 T. Tong, Y. Zhao, L. Delzeit, Al. Kashani, M. Meyyappan, and A. Majumdar, Dense Vertically Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials, IEEE Transactions on Components and Packaging Technologies, 30(1), 92–100
36.
Zurück zum Zitat P.C. Irwin, Y. Cao, A. Bansal, and L.S. Schadler, “Thermal and Mechanical Properties of Polyimide Nanocomposites,” 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 120–123, 2003 P.C. Irwin, Y. Cao, A. Bansal, and L.S. Schadler, “Thermal and Mechanical Properties of Polyimide Nanocomposites,” 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 120–123, 2003
37.
Zurück zum Zitat L. Fan, B. Su, J. Qu, and C.P. Wong, “Effects of Nano-sized Particles on Electrical and Thermal Conductivities of Polymer Composites,” 9th International Symposium on Advanced Packaging Materials, 193–199, 2004 L. Fan, B. Su, J. Qu, and C.P. Wong, “Effects of Nano-sized Particles on Electrical and Thermal Conductivities of Polymer Composites,” 9th International Symposium on Advanced Packaging Materials, 193–199, 2004
38.
Zurück zum Zitat S.A. Putnam, D.G. Cahill, B.J. Ash, and L.S. Schadler, “High-precision Thermal Conductivity Measurements as a Probe of Polymer/nanoparticle Interfaces,” Journal of Applied Physics, 94(10), 6785–6788, 2003CrossRef S.A. Putnam, D.G. Cahill, B.J. Ash, and L.S. Schadler, “High-precision Thermal Conductivity Measurements as a Probe of Polymer/nanoparticle Interfaces,” Journal of Applied Physics, 94(10), 6785–6788, 2003CrossRef
39.
Zurück zum Zitat R. Aoki, and C.-P. Chiu, “Testing apparatus for thermal interface materials,” Proceedings of the SPIE – The International Society for Optical Engineering, 3582, 1036–1041, 1999 R. Aoki, and C.-P. Chiu, “Testing apparatus for thermal interface materials,” Proceedings of the SPIE – The International Society for Optical Engineering, 3582, 1036–1041, 1999
40.
Zurück zum Zitat G.L. Solbrekken, C.-P. Chiu, B. Byers, and D. Reichebbacher, “The Development of a Tool to Predict Package Level Thermal Interface Material Performance,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 48–54, 2000 G.L. Solbrekken, C.-P. Chiu, B. Byers, and D. Reichebbacher, “The Development of a Tool to Predict Package Level Thermal Interface Material Performance,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 48–54, 2000
41.
Zurück zum Zitat “Standard Test Method for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials,” ASTM D5470-93 “Standard Test Method for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials,” ASTM D5470-93
42.
Zurück zum Zitat C.-P. Chiu, G.L. Solbrekken, and T.M. Young, “Thermal Modeling and Experimental Validation of Thermal Interface Performance Between Non-Flat Surfaces,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 52–62, 2000 C.-P. Chiu, G.L. Solbrekken, and T.M. Young, “Thermal Modeling and Experimental Validation of Thermal Interface Performance Between Non-Flat Surfaces,” 7th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000, Vol. 1, 23–26 May, 52–62, 2000
43.
Zurück zum Zitat C.-P. Chiu, and G. Solbrekken, “Characterization of Thermal Interface Performance Using Transient Thermal Analysis Technique,” 1999 ISPS Conference C.-P. Chiu, and G. Solbrekken, “Characterization of Thermal Interface Performance Using Transient Thermal Analysis Technique,” 1999 ISPS Conference
44.
Zurück zum Zitat C.-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42(1), 93–100, 2002CrossRef C.-P. Chiu, J.G. Maveety, and Q.A. Tran, “Characterization of Solder Interfaces Using Laser Flash Metrology,” Microelectronics Reliability, 42(1), 93–100, 2002CrossRef
45.
Zurück zum Zitat C.-P. Chiu, G.L. Solbrekken, V. LeBonheur, Y.E. Xu, “Application of Phase-Change Materials in Pentium® III and Pentium® III XeonTM Processor Cartridges,” Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507). Reston, VA, USA: IMAPS – Int. Microelectron. & Packaging Soc, 265–270, 2000 C.-P. Chiu, G.L. Solbrekken, V. LeBonheur, Y.E. Xu, “Application of Phase-Change Materials in Pentium® III and Pentium® III XeonTM Processor Cartridges,” Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507). Reston, VA, USA: IMAPS – Int. Microelectron. & Packaging Soc, 265–270, 2000
46.
Zurück zum Zitat T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Cartridge Thermal Design of Pentium(R) III Processor for Workstation: Giga Hertz Technology Envelope Extension Challenges,” Proceedings of 3rd Electronics Packaging Technology Conference (EPTC 2000) (Cat. No.00EX456). Piscataway, NJ, USA: IEEE, 65-71, 2000 T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Cartridge Thermal Design of Pentium(R) III Processor for Workstation: Giga Hertz Technology Envelope Extension Challenges,” Proceedings of 3rd Electronics Packaging Technology Conference (EPTC 2000) (Cat. No.00EX456). Piscataway, NJ, USA: IEEE, 65-71, 2000
47.
Zurück zum Zitat T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Novel Thermal Validation Metrology Based on Non-Uniform Power Distribution for Pentium® III XeonTM Cartridge Processor Design with Integrated Level Two Cache,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 1181–1186, 2001 T.J. Goh, A.N. Amir, C.-P. Chiu, and J. Torresola, “Novel Thermal Validation Metrology Based on Non-Uniform Power Distribution for Pentium® III XeonTM Cartridge Processor Design with Integrated Level Two Cache,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 1181–1186, 2001
48.
Zurück zum Zitat C.-P. Chiu, B. Chandran, K. Mello, and K. Kelley, “An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 91–97, 2001 C.-P. Chiu, B. Chandran, K. Mello, and K. Kelley, “An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications,” Proceedings of 51st Electronic Components and Technology Conference, 29 May–1 June, 91–97, 2001
49.
Zurück zum Zitat L. Bharatham, W.S. Fong, C.J. Leong, and C.-P. Chiu, “A Study of Application Pressure on Thermal Interface Material Performance and Reliability on FCBGA Package, 2006 EMAP L. Bharatham, W.S. Fong, C.J. Leong, and C.-P. Chiu, “A Study of Application Pressure on Thermal Interface Material Performance and Reliability on FCBGA Package, 2006 EMAP
50.
Zurück zum Zitat E. Samson, S. Machiroutu, J.-Y. Chang, I. Santos, J. Hermarding, A. Dani, R. Prasher, D. Song, and D. Puffo, “Some Thermal Technology and Thermal Management Considerations in the Design of Next Generation IntelR Centrino™ Mobile Technology Platforms,” Intel Technology Journal, 9(1), 2005 E. Samson, S. Machiroutu, J.-Y. Chang, I. Santos, J. Hermarding, A. Dani, R. Prasher, D. Song, and D. Puffo, “Some Thermal Technology and Thermal Management Considerations in the Design of Next Generation IntelR Centrino™ Mobile Technology Platforms,” Intel Technology Journal, 9(1), 2005
Metadaten
Titel
Thermal Interface Materials
verfasst von
Ravi Prasher, PhD
Chia-Pin Chiu, PhD
Copyright-Jahr
2009
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-78219-5_13

Neuer Inhalt