Skip to main content
Erschienen in: Thermal Engineering 12/2021

01.12.2021 | HEAT AND MASS TRANSFER, AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Thermal Properties of ARV-U Graphite in the Temperature Interval of 293–1673 K

verfasst von: A. Sh. Agazhanov, D. A. Samoshkin, Yu. M. Kozlovskii, S. V. Stankus

Erschienen in: Thermal Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The demand for the production of various grades of reactor graphite is growing every year. This is due to their active use in nuclear power. To carry out engineering calculations of temperature fields in the core and simulate the operation of the reactor in the normal mode, as well as to predict the consequences of possible extreme situations, highly reliable data on the thermophysical properties of structural carbon materials in a wide temperature range are required. However, such data, which were obtained in limited temperature ranges and with an unknown error, are fragmentary in the literature. In this work, the thermal diffusivity a, isobaric heat capacity cp, and linear thermal expansion coefficient (LTEC) β of ARV-U graphite at temperatures from room temperature to 1673 K are determined by the methods of laser flash, differential scanning calorimetry, and dilatometry. This graphite is considered as a cladding for fuel elements for neutron moderation. Thermal conductivity λ was calculated from the measurement results. Estimated error of the received data for a, λ, cp, and β was 2–4, 3–5, 2–4, and 3%, respectively. By approximating the experimental results, expressions are constructed that describe the dependence of the studied properties on temperature and allow one to determine the thermophysical properties of ARV-U graphite with high accuracy, and they can be considered as reference values. Based on the obtained results, it was concluded that the properties of ARV-U graphite in the entire investigated temperature range change monotonically, without jumps or breaks, and are well reproduced in heating–cooling cycles. This indicates that the structure of the carbon composite remains unchanged. The comparison of the data of this work with the properties of graphite of other grades is carried out. It was confirmed that the heat capacity of graphite in the investigated temperature range is practically independent of its grade. A relationship has been established between the heat transfer coefficients (a, λ) of graphite and its macroscopic density (or porosity). The maximum difference in the density of the studied samples of 1.7% led to a difference of 13–17% in thermal diffusivity and 12–15% in thermal conductivity. A method has been developed for predicting the thermal conductivity of ARV-U graphite based on the density value at room temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu. S. Virgil’ev, A. N. Seleznev, A. A. Sviridov, and I. P. Kalyagina, “Reactor graphite: Development, production and properties,” Ross. Khim. Zh. 50 (1), 4–12 (2006). Yu. S. Virgil’ev, A. N. Seleznev, A. A. Sviridov, and I. P. Kalyagina, “Reactor graphite: Development, production and properties,” Ross. Khim. Zh. 50 (1), 4–12 (2006).
2.
Zurück zum Zitat V. P. Sosedov, Properties of Carbon-Based Structural Materials: Handbook (Metallurgiya, Moscow, 1975) [in Russian]. V. P. Sosedov, Properties of Carbon-Based Structural Materials: Handbook (Metallurgiya, Moscow, 1975) [in Russian].
3.
Zurück zum Zitat A. S. Fialkov, Carbon. Interlayer Compounds and Composites Based on It (AspektPress, Moscow, 1997) [in Russian]. A. S. Fialkov, Carbon. Interlayer Compounds and Composites Based on It (AspektPress, Moscow, 1997) [in Russian].
4.
Zurück zum Zitat “Graphite,” XuMuK: Chemistry Website. http://www. xumuk.ru/encyklopedia/1145.html. “Graphite,” XuMuK: Chemistry Website. http://​www.​ xumuk.ru/encyklopedia/1145.html.
8.
Zurück zum Zitat R. E. Taylor and H. Groot, Thermophysical Properties of POCO Graphite, U. S. Air Force Report No. AFOSR-TR-78-1375 (1978). R. E. Taylor and H. Groot, Thermophysical Properties of POCO Graphite, U. S. Air Force Report No. AFOSR-TR-78-1375 (1978).
12.
Zurück zum Zitat S. V. Stankus, O. S. Yatsuk, E. I. Zhmurikov, and L. Tecchio, “Thermal expansion of artificial graphites in the temperature range 293–1650 K,” Thermophys. Aeromech. 19, 463–468 (2012).CrossRef S. V. Stankus, O. S. Yatsuk, E. I. Zhmurikov, and L. Tecchio, “Thermal expansion of artificial graphites in the temperature range 293–1650 K,” Thermophys. Aeromech. 19, 463–468 (2012).CrossRef
Metadaten
Titel
Thermal Properties of ARV-U Graphite in the Temperature Interval of 293–1673 K
verfasst von
A. Sh. Agazhanov
D. A. Samoshkin
Yu. M. Kozlovskii
S. V. Stankus
Publikationsdatum
01.12.2021
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 12/2021
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601521120016

Weitere Artikel der Ausgabe 12/2021

Thermal Engineering 12/2021 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Film Cooling of a Concave Surface with Two-Row Coolant Supply in Trenches

    Premium Partner