Skip to main content

2014 | OriginalPaper | Buchkapitel

5. Thermal to Electrical Energy Converters

verfasst von : Steven Percy, Chris Knight, Scott McGarry, Alex Post, Tim Moore, Kate Cavanagh

Erschienen in: Thermal Energy Harvesting for Application at MEMS Scale

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The previous chapters discussed the generation of mechanical motion from thermal energy and the subsequent conversion of this to electrical energy. The additional step from thermal to electrical energy can introduce further losses, reducing overall efficiency. In this chapter, the conversion of thermal energy directly to electrical energy is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dorf RC (2006) Systems, controls, embedded systems, energy, and machines, 6th edn. CRC Press, Boca Raton Dorf RC (2006) Systems, controls, embedded systems, energy, and machines, 6th edn. CRC Press, Boca Raton
2.
Zurück zum Zitat Richardson OW (2003) Thermionic emission from hot bodies, 1st edn. Wexford College Press, Palm Springs, p 332 Richardson OW (2003) Thermionic emission from hot bodies, 1st edn. Wexford College Press, Palm Springs, p 332
3.
Zurück zum Zitat Myatt J (1963) Thermionic emission from zirconium carbide with caesium vapour present. Adv Energy Convers 3(1):279–285. ISSN: 0365-1789CrossRef Myatt J (1963) Thermionic emission from zirconium carbide with caesium vapour present. Adv Energy Convers 3(1):279–285. ISSN: 0365-1789CrossRef
4.
Zurück zum Zitat Da Rosa A (2009) Fundamentals of renewable energy processes, 3rd edn, pp 219–262 Da Rosa A (2009) Fundamentals of renewable energy processes, 3rd edn, pp 219–262
5.
Zurück zum Zitat Gryaznov GM, Zhabotinskii EE, Zrodnikov AV et al (1989) Thermoemission reactor-converters for nuclear power units in outer space. At Energy 66:414–418CrossRef Gryaznov GM, Zhabotinskii EE, Zrodnikov AV et al (1989) Thermoemission reactor-converters for nuclear power units in outer space. At Energy 66:414–418CrossRef
7.
Zurück zum Zitat Zhang C, Najafi K, Bernal LP, Washabaugh PD (2003) Mechanical and thermal design of a combustion-based thermionic micro power generator. In: ASME conference proceedings 2003, pp 717–724. doi:10.1115/IMECE2003-41531 Zhang C, Najafi K, Bernal LP, Washabaugh PD (2003) Mechanical and thermal design of a combustion-based thermionic micro power generator. In: ASME conference proceedings 2003, pp 717–724. doi:10.​1115/​IMECE2003-41531
8.
Zurück zum Zitat Tavkhelidze A, Svanidze V, Noselidze I (2007) Fermi gas energetics in low-dimensional metals of special geometry. J Vac Sci Technol B Microelectron Nanometer Struct 25:1270–1275CrossRef Tavkhelidze A, Svanidze V, Noselidze I (2007) Fermi gas energetics in low-dimensional metals of special geometry. J Vac Sci Technol B Microelectron Nanometer Struct 25:1270–1275CrossRef
9.
Zurück zum Zitat Kilgrow S, Geirsson A, Sigfusson T (2003) Harnessing of low temperature geothermal and waste heat using power chips in Varmaraf heat exchangers. In: International geothermal conference, Reykjavik, Iceland, p 097 Kilgrow S, Geirsson A, Sigfusson T (2003) Harnessing of low temperature geothermal and waste heat using power chips in Varmaraf heat exchangers. In: International geothermal conference, Reykjavik, Iceland, p 097
10.
Zurück zum Zitat Hossain A, Rashid MH (1991) Pyroelectric detectors and their applications. IEEE Trans Ind Appl 27:824–829CrossRef Hossain A, Rashid MH (1991) Pyroelectric detectors and their applications. IEEE Trans Ind Appl 27:824–829CrossRef
11.
Zurück zum Zitat Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1387CrossRef Whatmore RW (1986) Pyroelectric devices and materials. Rep Prog Phys 49:1335–1387CrossRef
12.
Zurück zum Zitat Bogdanov SV (2002) The origin of the piezoelectric effect in pyroelectric crystals. IEEE Trans Ultrason Ferroelectr Freq Control 49:1469–1473CrossRef Bogdanov SV (2002) The origin of the piezoelectric effect in pyroelectric crystals. IEEE Trans Ultrason Ferroelectr Freq Control 49:1469–1473CrossRef
13.
Zurück zum Zitat Tichý J, Erhart J, Kittinger E, Prívratská J (2010) Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer, Berlin Tichý J, Erhart J, Kittinger E, Prívratská J (2010) Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer, Berlin
14.
Zurück zum Zitat Christofides C, Mandelis A (1990) Solid state sensors for trace hydrogen gas detection. J Appl Phys 68:R1–R30CrossRef Christofides C, Mandelis A (1990) Solid state sensors for trace hydrogen gas detection. J Appl Phys 68:R1–R30CrossRef
15.
Zurück zum Zitat Lang SB, Steckel F (1965) Study of the ultrasensitive pyroelectric thermometer. Rev Sci Instrum 36:1817–1821CrossRef Lang SB, Steckel F (1965) Study of the ultrasensitive pyroelectric thermometer. Rev Sci Instrum 36:1817–1821CrossRef
16.
Zurück zum Zitat Huang YP, Young MS, Tai CC (2008) Noninvasive respiratory monitoring system based on the piezoceramic transducer’s pyroelectric effect. Rev Sci Instrum 79:35103–351039CrossRef Huang YP, Young MS, Tai CC (2008) Noninvasive respiratory monitoring system based on the piezoceramic transducer’s pyroelectric effect. Rev Sci Instrum 79:35103–351039CrossRef
17.
Zurück zum Zitat Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric Energy Conversion: Optimization Principles. IEEE Trans Ultrason Ferroelectr Freq Control 55:538–551 Sebald G, Lefeuvre E, Guyomar D (2008) Pyroelectric Energy Conversion: Optimization Principles. IEEE Trans Ultrason Ferroelectr Freq Control 55:538–551
18.
Zurück zum Zitat Xie J, Mane XP, Green CW et al (2010) Performance of thin film piezoelectric materials for pyroelectric energy harvesting. J Intel Mater Syst Struct 21:243–249CrossRef Xie J, Mane XP, Green CW et al (2010) Performance of thin film piezoelectric materials for pyroelectric energy harvesting. J Intel Mater Syst Struct 21:243–249CrossRef
19.
Zurück zum Zitat Ravindran SKT, Huesgen T, Kroener M, Woias P (2011) A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett 99:104102–1041023CrossRef Ravindran SKT, Huesgen T, Kroener M, Woias P (2011) A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett 99:104102–1041023CrossRef
20.
Zurück zum Zitat Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597CrossRef Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597CrossRef
21.
Zurück zum Zitat Harman TC, Taylor PJ, Spears DL, Walsh MP (2000) Thermoelectric quantum-dot superlattices with high ZT. J Electron Mater 29:L1–L2CrossRef Harman TC, Taylor PJ, Spears DL, Walsh MP (2000) Thermoelectric quantum-dot superlattices with high ZT. J Electron Mater 29:L1–L2CrossRef
22.
Zurück zum Zitat Chen HY, Savvides N (2009) Microstructure and thermoelectric properties of n- and p-type Mg2Sn compounds prepared by modified Bridgeman method. J Electron Mater 38:1056–1060CrossRef Chen HY, Savvides N (2009) Microstructure and thermoelectric properties of n- and p-type Mg2Sn compounds prepared by modified Bridgeman method. J Electron Mater 38:1056–1060CrossRef
23.
24.
Zurück zum Zitat Muller KH (2010) Modeling thermoelectric properties of assemblies of nanocrystals. In: International conference on nanoscience and nanotechnology, Sydney, Australia, p 5 Muller KH (2010) Modeling thermoelectric properties of assemblies of nanocrystals. In: International conference on nanoscience and nanotechnology, Sydney, Australia, p 5
25.
Zurück zum Zitat Ferrari M, Ferrari V, Guizetti M et al (2007) Characterization of thermoelectric modules for powering autonomous sensors. In: 24th IEEE instrumentation and measurement technology conference, Warsaw, Poland, pp 1708–1713 Ferrari M, Ferrari V, Guizetti M et al (2007) Characterization of thermoelectric modules for powering autonomous sensors. In: 24th IEEE instrumentation and measurement technology conference, Warsaw, Poland, pp 1708–1713
26.
Zurück zum Zitat Riffat SB, Xiaoli M (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935CrossRef Riffat SB, Xiaoli M (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935CrossRef
27.
Zurück zum Zitat Weiling L, Shantung T (2004) Recent developments of thermoelectric power generation. Chin Sci Bull 49:1212–1219CrossRef Weiling L, Shantung T (2004) Recent developments of thermoelectric power generation. Chin Sci Bull 49:1212–1219CrossRef
28.
Zurück zum Zitat Knight C, Collins M (2009) Results of a water based thermoelectric energy harvesting device for powering wireless sensor nodes. In: SPIE, p 72880Y–12 Knight C, Collins M (2009) Results of a water based thermoelectric energy harvesting device for powering wireless sensor nodes. In: SPIE, p 72880Y–12
29.
Zurück zum Zitat Davidson J, Collins M, Behrens S (2009) Thermal energy harvesting between the air/water interface for powering wireless sensor nodes. In: Ahmadian M, Ghasemi-Nejhad MN (eds) SPIE. pp 728814–11 Davidson J, Collins M, Behrens S (2009) Thermal energy harvesting between the air/water interface for powering wireless sensor nodes. In: Ahmadian M, Ghasemi-Nejhad MN (eds) SPIE. pp 728814–11
30.
Zurück zum Zitat Knight C, Davidson J (2010) Thermoelectric energy harvesting as a wireless sensor node power source. SPIE, p 76431E−11 Knight C, Davidson J (2010) Thermoelectric energy harvesting as a wireless sensor node power source. SPIE, p 76431E−11
31.
Zurück zum Zitat Stevens J (2004) Optimal placement depth for air-ground heat transfer systems. Appl Therm Eng 24:149–157CrossRef Stevens J (2004) Optimal placement depth for air-ground heat transfer systems. Appl Therm Eng 24:149–157CrossRef
32.
Zurück zum Zitat LaGrandeur J, Crane D, Eder A (2005) Vehicle fuel economy improvement through thermoelectric waste heat recovery. In; Proceedings of the 11th diesel engine emissions reduction LaGrandeur J, Crane D, Eder A (2005) Vehicle fuel economy improvement through thermoelectric waste heat recovery. In; Proceedings of the 11th diesel engine emissions reduction
33.
Zurück zum Zitat Thacher EF, Helenbrook BT, Karri MA, Richter CJ (2007) Testing of an automobile exhaust thermoelectric generator in a light truck. J Autom Eng 221:95–107CrossRef Thacher EF, Helenbrook BT, Karri MA, Richter CJ (2007) Testing of an automobile exhaust thermoelectric generator in a light truck. J Autom Eng 221:95–107CrossRef
34.
Zurück zum Zitat Yang J (2009) Automotive applications of thermoelectric materials. J Electron Mater 38:1245CrossRef Yang J (2009) Automotive applications of thermoelectric materials. J Electron Mater 38:1245CrossRef
37.
Zurück zum Zitat Bennet GL (2006) Space nuclear power: opening the final frontier. In: 4th international energy conversion engineering conference and exhibit, San Diego, CA, pp 26–29 Bennet GL (2006) Space nuclear power: opening the final frontier. In: 4th international energy conversion engineering conference and exhibit, San Diego, CA, pp 26–29
38.
Zurück zum Zitat Fujita K, Mochida T, Nakamura K (2001) High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn J Appl Phys 40:4644CrossRef Fujita K, Mochida T, Nakamura K (2001) High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jpn J Appl Phys 40:4644CrossRef
39.
Zurück zum Zitat Ohta S, Takashi N, Ohta H et al (2005) Large Thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial Film at high temperature. Appl Phys Lett 87:092108. doi:10.1063/1.2035889 CrossRef Ohta S, Takashi N, Ohta H et al (2005) Large Thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial Film at high temperature. Appl Phys Lett 87:092108. doi:10.​1063/​1.​2035889 CrossRef
41.
Zurück zum Zitat Vining C, Williams R, Underwood M, Al E (1993) Reversible thermodynamic cycle for amtec power conversion. J Electrochem Soc 140:2760–2763CrossRef Vining C, Williams R, Underwood M, Al E (1993) Reversible thermodynamic cycle for amtec power conversion. J Electrochem Soc 140:2760–2763CrossRef
42.
Zurück zum Zitat Ryan M, Williams R, Lara L (2001) Advances in electrode materials for amtec. In: Space Technology and Applications International Forum, pp 1088–1093 Ryan M, Williams R, Lara L (2001) Advances in electrode materials for amtec. In: Space Technology and Applications International Forum, pp 1088–1093
44.
Zurück zum Zitat Ryan MA, Williams RM, Fiebig G et al (2002) Mo/NaxTiO2 mixed conducting electrodes the alkali metal thermal to electric converter. California Institute of Technology, Pasadena Ryan MA, Williams RM, Fiebig G et al (2002) Mo/NaxTiO2 mixed conducting electrodes the alkali metal thermal to electric converter. California Institute of Technology, Pasadena
45.
Zurück zum Zitat Shields VB, Kisor AK, Fiebig B et al (2001) Metallurgical examination of an AMTEC power unit. In: Space Technology and Applications International Forum-2001. AIP Conference Proceedings, pp 1094–1099 Shields VB, Kisor AK, Fiebig B et al (2001) Metallurgical examination of an AMTEC power unit. In: Space Technology and Applications International Forum-2001. AIP Conference Proceedings, pp 1094–1099
46.
Zurück zum Zitat Ryan MA, Williams RM, Lara L et al (1999) The role of titanium dioxide in the performance of titanium nitride AMTEC electrodes. California Institute of Technology, Pasadena Ryan MA, Williams RM, Lara L et al (1999) The role of titanium dioxide in the performance of titanium nitride AMTEC electrodes. California Institute of Technology, Pasadena
47.
Zurück zum Zitat Ryan MA, Kisor A, Williams RM et al (2000) Lifetimes of electrodes for AMTEC cells. In: AIP conference proceedings. Space Technology and Applications International Forum, pp 1377–1382 Ryan MA, Kisor A, Williams RM et al (2000) Lifetimes of electrodes for AMTEC cells. In: AIP conference proceedings. Space Technology and Applications International Forum, pp 1377–1382
48.
Zurück zum Zitat Ryan M, Shields V, Cortez R (2000) Lifetimes of AMTEC electrodes: molybdenum, rhodium-tungsten, and titanium nitride. Space Technol Appl Int Forum 2:1377–1382 Ryan M, Shields V, Cortez R (2000) Lifetimes of AMTEC electrodes: molybdenum, rhodium-tungsten, and titanium nitride. Space Technol Appl Int Forum 2:1377–1382
49.
Zurück zum Zitat Lodhi M, Vijayaraghavan P, Daloglu A (2001) An Overview of advanced space/terrestrial power generation device: AMTEC. J Power Sour 103:25–33CrossRef Lodhi M, Vijayaraghavan P, Daloglu A (2001) An Overview of advanced space/terrestrial power generation device: AMTEC. J Power Sour 103:25–33CrossRef
51.
Zurück zum Zitat Johnson LG, Muller JR (2007) Johnson reversible engine. EP1314214A1 Johnson LG, Muller JR (2007) Johnson reversible engine. EP1314214A1
53.
Zurück zum Zitat Streetman BG, Banerjee S (1995) Solid state electronic devices. Prentice-Hall, Englewood Cliffs Streetman BG, Banerjee S (1995) Solid state electronic devices. Prentice-Hall, Englewood Cliffs
54.
Zurück zum Zitat Marti A, Arafijo GL (1996) Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol Energy Mater Sol Cells 43:203–222CrossRef Marti A, Arafijo GL (1996) Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol Energy Mater Sol Cells 43:203–222CrossRef
56.
Zurück zum Zitat Shockley W, Queisser HJ (1961) Detailed Balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519 Shockley W, Queisser HJ (1961) Detailed Balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519
59.
Zurück zum Zitat McGehee MD, Topinka MA (2006) Solar cells: pictures from the blended zone. Nat Mater 5:675–676CrossRef McGehee MD, Topinka MA (2006) Solar cells: pictures from the blended zone. Nat Mater 5:675–676CrossRef
60.
Zurück zum Zitat Fraas LM, Samaras JE, Baldasaro PF, Brown EJ (1995) Spectral control for thermophotovoltaic generators. US5403405 Fraas LM, Samaras JE, Baldasaro PF, Brown EJ (1995) Spectral control for thermophotovoltaic generators. US5403405
61.
Zurück zum Zitat Kovacik G, Fraas L, Astle C (2003) Thermiphotovoltaic Device. US 2006/0107995A1 Kovacik G, Fraas L, Astle C (2003) Thermiphotovoltaic Device. US 2006/0107995A1
62.
Zurück zum Zitat Lee JB, Chen Z, Allen MG et al (1995) A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply. J Microelectromech Syst 4:102–108. doi:10.1109/84.465125 CrossRef Lee JB, Chen Z, Allen MG et al (1995) A miniaturized high-voltage solar cell array as an electrostatic MEMS power supply. J Microelectromech Syst 4:102–108. doi:10.​1109/​84.​465125 CrossRef
63.
Zurück zum Zitat Bermejo S, Ortega P, Castañer L (2005) Fabrication of monolithic photovoltaic arrays on crystalline silicon by wafer bonding and deep etching techniques. Prog Photovoltaics Res Appl 13:617–625. doi:10.1002/pip.615 CrossRef Bermejo S, Ortega P, Castañer L (2005) Fabrication of monolithic photovoltaic arrays on crystalline silicon by wafer bonding and deep etching techniques. Prog Photovoltaics Res Appl 13:617–625. doi:10.​1002/​pip.​615 CrossRef
64.
Zurück zum Zitat Lewis J, Zhang J, Jiang X (2009) Fabrication of organic solar array for applications in microelectromechanical systems. J Renew Sustain Energy 1:13101CrossRef Lewis J, Zhang J, Jiang X (2009) Fabrication of organic solar array for applications in microelectromechanical systems. J Renew Sustain Energy 1:13101CrossRef
65.
Zurück zum Zitat Schaevitz S (2000) A MEMS thermoelectric generator. Ph.D. dissertation, pp 1–165 Schaevitz S (2000) A MEMS thermoelectric generator. Ph.D. dissertation, pp 1–165
Metadaten
Titel
Thermal to Electrical Energy Converters
verfasst von
Steven Percy
Chris Knight
Scott McGarry
Alex Post
Tim Moore
Kate Cavanagh
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-9215-3_5

Neuer Inhalt