Skip to main content
Erschienen in: Journal of Materials Science 19/2019

27.06.2019 | Polymers & biopolymers

Thermally insulating polybenzoxazine aerogels based on 4,4′-diamino-diphenylmethane benzoxazine

verfasst von: Yunyun Xiao, Liangjun Li, Sizhao Zhang, Junzong Feng, Yonggang Jiang, Jian Feng

Erschienen in: Journal of Materials Science | Ausgabe 19/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polybenzoxazine (PBO) aerogels were prepared from 4,4′-diamino-diphenylmethane (MDA) benzoxazine monomer by HCl-catalyzed ring-opening polymerization at room temperature after CO2 supercritical drying. This study systematically analyzes the microstructures, thermal insulation properties, compressive properties, and thermal stabilities of the PBO aerogels. The aerogel structure was a cross-linked three-dimensional network with a pore size of 10–140 nm. The conductivity of the aerogels was 0.035–0.057 W/m K under ambient conditions, reducing to 0.009 W/m K at 3 Pa. The compressive strength reached 14.42 MPa under 10% strains, much greater than in SiO2 aerogels of similar density (0.40 g/cm3) reinforced by high-silica glass fiber, which is only 1.30 MPa. Hydrogen bonding interaction was found to be critical for constructing the three-dimensional network structure of the aerogels. This work provides a valuable reference for exploring new structures and expanding the thermal insulation applications of PBO aerogels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bag S, Trikalitis PN, Chupas PJ et al (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317:490–493CrossRef Bag S, Trikalitis PN, Chupas PJ et al (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317:490–493CrossRef
2.
Zurück zum Zitat Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:23–45CrossRef Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:23–45CrossRef
3.
Zurück zum Zitat Lu X, Arduini-Schuster MC, Kuhn J (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRef Lu X, Arduini-Schuster MC, Kuhn J (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972CrossRef
4.
Zurück zum Zitat Jiménez-Saelices C, Seantier B, Bernard C et al (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113CrossRef Jiménez-Saelices C, Seantier B, Bernard C et al (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113CrossRef
5.
Zurück zum Zitat Seantier B, Bendahou D, Bendahou A et al (2016) Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348CrossRef Seantier B, Bendahou D, Bendahou A et al (2016) Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348CrossRef
6.
Zurück zum Zitat Groult S, Budtova T (2018) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81CrossRef Groult S, Budtova T (2018) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81CrossRef
7.
Zurück zum Zitat Zhu JD, Hu J, Jiang CW et al (2019) Ultralight, hydrophobic, monolithic konjac glucomannan–silica composite aerogel with thermal insulation and mechanical properties. Carbohydr Polym 207:246–255CrossRef Zhu JD, Hu J, Jiang CW et al (2019) Ultralight, hydrophobic, monolithic konjac glucomannan–silica composite aerogel with thermal insulation and mechanical properties. Carbohydr Polym 207:246–255CrossRef
8.
Zurück zum Zitat Shi JJ, Lu LB, Guo WT et al (2013) Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydr Polym 98:282–289CrossRef Shi JJ, Lu LB, Guo WT et al (2013) Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydr Polym 98:282–289CrossRef
9.
Zurück zum Zitat Zhou T, Cheng XD, Yl Pan et al (2018) Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl Surf Sci 437:321–328CrossRef Zhou T, Cheng XD, Yl Pan et al (2018) Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl Surf Sci 437:321–328CrossRef
10.
Zurück zum Zitat Shafi S, Navik R, Ding X et al (2019) Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J Non Cryst Solids 503:78–83CrossRef Shafi S, Navik R, Ding X et al (2019) Improved heat insulation and mechanical properties of silica aerogel/glass fiber composite by impregnating silica gel. J Non Cryst Solids 503:78–83CrossRef
11.
Zurück zum Zitat Liang H, Guan QF, Chen LF et al (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105CrossRef Liang H, Guan QF, Chen LF et al (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105CrossRef
12.
Zurück zum Zitat Zhang SZ, Feng J, Feng JZ et al (2017) Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area. Chem Eng J 309:700–707CrossRef Zhang SZ, Feng J, Feng JZ et al (2017) Formation of enhanced gelatum using ethanol/water binary medium for fabricating chitosan aerogels with high specific surface area. Chem Eng J 309:700–707CrossRef
13.
Zurück zum Zitat Guo H, Meador MAB, McCorkle L et al (2012) Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces 4:5422–5429CrossRef Guo H, Meador MAB, McCorkle L et al (2012) Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces 4:5422–5429CrossRef
14.
Zurück zum Zitat Meador MAB, Malow EJ, Silva R et al (2012) mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces 4:536–544CrossRef Meador MAB, Malow EJ, Silva R et al (2012) mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces 4:536–544CrossRef
15.
Zurück zum Zitat Chidambareswarapattar C, McCarver PM, Luo HY et al (2013) Fractal multiscale nanoporous polyurethanes: flexible to extremely rigid aerogels from multifunctional small molecules. Chem Mater 25(15):3205–3224CrossRef Chidambareswarapattar C, McCarver PM, Luo HY et al (2013) Fractal multiscale nanoporous polyurethanes: flexible to extremely rigid aerogels from multifunctional small molecules. Chem Mater 25(15):3205–3224CrossRef
16.
Zurück zum Zitat Diascorna N, Calasb S, Salléec H et al (2015) Polyurethane aerogels synthesis for thermal insulation-textural, thermal and mechanical properties. J Supercrit Fluid 106:76–84CrossRef Diascorna N, Calasb S, Salléec H et al (2015) Polyurethane aerogels synthesis for thermal insulation-textural, thermal and mechanical properties. J Supercrit Fluid 106:76–84CrossRef
17.
Zurück zum Zitat Rhine W, Wang J, Begag R (2006) Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same. U.S. Patent 7,074,880 Rhine W, Wang J, Begag R (2006) Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same. U.S. Patent 7,074,880
18.
Zurück zum Zitat Meador MAB, Alemán CR, Hanson K et al (2015) Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249CrossRef Meador MAB, Alemán CR, Hanson K et al (2015) Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249CrossRef
19.
Zurück zum Zitat Xie HY, Yang W, Yuen ACY (2017) Study on flame retarded flexible polyurethane foam/alumina aerogel composites with improved fire safety. Chem Eng J 311:310–317CrossRef Xie HY, Yang W, Yuen ACY (2017) Study on flame retarded flexible polyurethane foam/alumina aerogel composites with improved fire safety. Chem Eng J 311:310–317CrossRef
20.
Zurück zum Zitat Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol Gel Sci Technol 52:56–64CrossRef Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol Gel Sci Technol 52:56–64CrossRef
21.
Zurück zum Zitat Gu SL, Li Z, Miyoshi T et al (2012) Polybenzoxazine aerogels with controllable pore structures. RSC Adv 5:26801–26805CrossRef Gu SL, Li Z, Miyoshi T et al (2012) Polybenzoxazine aerogels with controllable pore structures. RSC Adv 5:26801–26805CrossRef
22.
Zurück zum Zitat Mahadik-Khanolkar S, Donthula S, Sotiriou-Leventis C et al (2014) Polybenzoxazine aerogels. 1. High-yield room-temperature acid-catalyzed synthesis of robust monoliths, oxidative aromatization, and conversion to microporous carbons. Chem Mater 26:1303–1317CrossRef Mahadik-Khanolkar S, Donthula S, Sotiriou-Leventis C et al (2014) Polybenzoxazine aerogels. 1. High-yield room-temperature acid-catalyzed synthesis of robust monoliths, oxidative aromatization, and conversion to microporous carbons. Chem Mater 26:1303–1317CrossRef
23.
Zurück zum Zitat Brunovska Z, Liu JP, Ishida H (1999) 1,3,5-Triphenylhexahydro-1,3,5-triazine-active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromol Chem Phys 200:1745–1752CrossRef Brunovska Z, Liu JP, Ishida H (1999) 1,3,5-Triphenylhexahydro-1,3,5-triazine-active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers. Macromol Chem Phys 200:1745–1752CrossRef
24.
Zurück zum Zitat Thubsuang U, Ishida H, Wongkasemjit S et al (2015) Advanced and economical ambient drying method for controlled mesopore polybenzoxazine-based carbon xerogels: effects of non-ionic and cationic surfactant on porous structure. J Colloid Interfaces Sci 459:241–249CrossRef Thubsuang U, Ishida H, Wongkasemjit S et al (2015) Advanced and economical ambient drying method for controlled mesopore polybenzoxazine-based carbon xerogels: effects of non-ionic and cationic surfactant on porous structure. J Colloid Interfaces Sci 459:241–249CrossRef
25.
Zurück zum Zitat Ertas Y, Uyar T (2017) Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for water treatment. Carbohydr Polym 177:378–387CrossRef Ertas Y, Uyar T (2017) Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for water treatment. Carbohydr Polym 177:378–387CrossRef
26.
Zurück zum Zitat Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391CrossRef Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391CrossRef
27.
Zurück zum Zitat Katanyoota P, Wongchaisuwat A, Chaisuwan T et al (2010) Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors. Mater Sci Eng B 167:36–42CrossRef Katanyoota P, Wongchaisuwat A, Chaisuwan T et al (2010) Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors. Mater Sci Eng B 167:36–42CrossRef
28.
Zurück zum Zitat Mahadik-Khanolka S, Donthula S, Bang A et al (2014) Polybenzoxazine aerogels. 2. Interpenetrating network with iron oxide and the carbothermal synthesis of high porous monolithic pure iron (0) aerogels as energetic materials. Chem Mater 26:1318–1331CrossRef Mahadik-Khanolka S, Donthula S, Bang A et al (2014) Polybenzoxazine aerogels. 2. Interpenetrating network with iron oxide and the carbothermal synthesis of high porous monolithic pure iron (0) aerogels as energetic materials. Chem Mater 26:1318–1331CrossRef
29.
Zurück zum Zitat Ardhyananta H, Haniff MohdW, Sasaki M et al (2014) Performance enhancement of polybenzoxazine by hybridization with polysiloxane. Polymer 49:4585–4591CrossRef Ardhyananta H, Haniff MohdW, Sasaki M et al (2014) Performance enhancement of polybenzoxazine by hybridization with polysiloxane. Polymer 49:4585–4591CrossRef
30.
Zurück zum Zitat Li H, Gu SL, Thomas S et al (2018) Investigation of polybenzoxazine gelation using laser light scattering. J Appl Polym Sci 45709:1–5 Li H, Gu SL, Thomas S et al (2018) Investigation of polybenzoxazine gelation using laser light scattering. J Appl Polym Sci 45709:1–5
31.
Zurück zum Zitat Fang B, Lu XC, Hu JY et al (2019) pH controlled green luminescent carbon dots derived from benzoxazine monomers for the fluorescence turn-on and turn-off detection. J Colloid Interfaces Sci 536:516–525CrossRef Fang B, Lu XC, Hu JY et al (2019) pH controlled green luminescent carbon dots derived from benzoxazine monomers for the fluorescence turn-on and turn-off detection. J Colloid Interfaces Sci 536:516–525CrossRef
32.
Zurück zum Zitat Arslan M, Kiskan B, Yagci Y (2018) Benzoxazine-based thermoset with autonomous self-healing and shape recovery. Macromolecules 51:10095–10103CrossRef Arslan M, Kiskan B, Yagci Y (2018) Benzoxazine-based thermoset with autonomous self-healing and shape recovery. Macromolecules 51:10095–10103CrossRef
33.
Zurück zum Zitat Takeichi T, Guo Y, Rimdusit S (2005) Performance improvement of polybenzoxazine by alloying with polyimide: effect of preparation method on the properties. Polymer 46:4909–4916CrossRef Takeichi T, Guo Y, Rimdusit S (2005) Performance improvement of polybenzoxazine by alloying with polyimide: effect of preparation method on the properties. Polymer 46:4909–4916CrossRef
34.
Zurück zum Zitat Aplincourt P, Bureau C, Anthoine JL et al (2001) Accurate density functional calculations of core electron binding energies on hydrogen-bonded systems. J Phys Chem A 105:7364–7370CrossRef Aplincourt P, Bureau C, Anthoine JL et al (2001) Accurate density functional calculations of core electron binding energies on hydrogen-bonded systems. J Phys Chem A 105:7364–7370CrossRef
35.
Zurück zum Zitat Kerber SJ, Bruckner JJ, Wozniak K et al (1996) The nature of hydrogen in x-ray photoelectron spectroscopy: general patterns from hydroxides to hydrogen bonding. J Vac Sci Technol A 14(3):1314–1320CrossRef Kerber SJ, Bruckner JJ, Wozniak K et al (1996) The nature of hydrogen in x-ray photoelectron spectroscopy: general patterns from hydroxides to hydrogen bonding. J Vac Sci Technol A 14(3):1314–1320CrossRef
36.
Zurück zum Zitat Shen XB, Dai JY, Liu Y et al (2017) Synthesis of high performance polybenzoxazine networks from bio-based furfurylamine: Furan vs benzene ring. Polymer 122:258–269CrossRef Shen XB, Dai JY, Liu Y et al (2017) Synthesis of high performance polybenzoxazine networks from bio-based furfurylamine: Furan vs benzene ring. Polymer 122:258–269CrossRef
37.
Zurück zum Zitat Kim HD, Ishida H (2002) A study on hydrogen-bonded network structure of polybenzoxazines. J Phys Chem A 106:3271–3280CrossRef Kim HD, Ishida H (2002) A study on hydrogen-bonded network structure of polybenzoxazines. J Phys Chem A 106:3271–3280CrossRef
38.
Zurück zum Zitat Feng JZ, Wang X, Jiang YG et al (2016) Study on thermal conductivities of aromatic polyimide aerogels. ACS Appl Mater Interfaces 8:12992–12996CrossRef Feng JZ, Wang X, Jiang YG et al (2016) Study on thermal conductivities of aromatic polyimide aerogels. ACS Appl Mater Interfaces 8:12992–12996CrossRef
39.
Zurück zum Zitat Guo H, Meador MAB, McCorkle L et al (2011) Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl Mater Interfaces 3:546–552CrossRef Guo H, Meador MAB, McCorkle L et al (2011) Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl Mater Interfaces 3:546–552CrossRef
40.
Zurück zum Zitat Yue CW, Feng J, Feng JZ et al (2017) Efficient gaseous thermal insulation aerogels from 2-dimension nitrogen-doped graphene sheets. Int J Heat Mass Trans 109:1026–1030CrossRef Yue CW, Feng J, Feng JZ et al (2017) Efficient gaseous thermal insulation aerogels from 2-dimension nitrogen-doped graphene sheets. Int J Heat Mass Trans 109:1026–1030CrossRef
41.
Zurück zum Zitat Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738CrossRef Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738CrossRef
42.
Zurück zum Zitat Feng J (2016) Aerogel materials for highly efficient thermal insulation. Science Press, Beijing Feng J (2016) Aerogel materials for highly efficient thermal insulation. Science Press, Beijing
43.
Zurück zum Zitat Hemvichian K, Ishida H (2002) Thermal decomposition processes in aromatic amine-based polybenzoxazines investigated by TGA and GC–MS. Polymer 43:4391–4402CrossRef Hemvichian K, Ishida H (2002) Thermal decomposition processes in aromatic amine-based polybenzoxazines investigated by TGA and GC–MS. Polymer 43:4391–4402CrossRef
44.
Zurück zum Zitat Takeichi T, Kano T, Agag T (2005) Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer 46:12172–12180CrossRef Takeichi T, Kano T, Agag T (2005) Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer 46:12172–12180CrossRef
Metadaten
Titel
Thermally insulating polybenzoxazine aerogels based on 4,4′-diamino-diphenylmethane benzoxazine
verfasst von
Yunyun Xiao
Liangjun Li
Sizhao Zhang
Junzong Feng
Yonggang Jiang
Jian Feng
Publikationsdatum
27.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03769-1

Weitere Artikel der Ausgabe 19/2019

Journal of Materials Science 19/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.