Skip to main content

2018 | OriginalPaper | Buchkapitel

44. Thermoelectric Cooling of a Photovoltaic Panel

verfasst von : Hossein Moshfegh, Mohammad Eslami, Arian Hosseini

Erschienen in: The Role of Exergy in Energy and the Environment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The performance of photovoltaic (PV) systems depends on many factors such as PV module temperature, solar radiation availability and the accumulation of dirt on solar panels. The temperature increment is one of the most challenging factors that affects the performance of photovoltaic systems which causes significant degradation in the cell efficiency and the amount of generated power specially in the high concentrator photovoltaics (HCPV); to overcome this issue, a cooling method by using thermoelectric cooling module is proposed and investigated. In this work, a thermoelectric module with a heat sink at the back is considered to be attached to the back side of photovoltaic panel. It is assumed that the required power to run the thermoelectric cooling module is provided by the photovoltaic panel itself. Solar irradiance, ambient temperature, wind velocity and the fin area of the heat sink are the most important parameters that affect the cell temperature and, consequently, the amount of generated power. An analytical model is developed and simulated by MATLAB to determine the cell temperature and calculates the optimized extra power generated by the photovoltaic cells due to cooling effect by the variation of the mentioned parameters. The results demonstrate a potential for improvement; however, the amount of extra generated power relates to the environmental circumstances and concentration ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xi H, Luo L, Fraisse G (2007) Development and applications of solar-based thermoelectric technologies. Renew Sust Energ Rev 11(5):923–936CrossRef Xi H, Luo L, Fraisse G (2007) Development and applications of solar-based thermoelectric technologies. Renew Sust Energ Rev 11(5):923–936CrossRef
2.
Zurück zum Zitat Van Sark WGJHM (2011) Feasibility of photovoltaic–thermoelectric hybrid modules. Appl Energy 88(8):2785–2790CrossRef Van Sark WGJHM (2011) Feasibility of photovoltaic–thermoelectric hybrid modules. Appl Energy 88(8):2785–2790CrossRef
3.
Zurück zum Zitat Najafi H, Woodbury KA (2013) Optimization of a cooling system based on Peltier effect for photovoltaic cells. Sol Energy 91:152–160CrossRef Najafi H, Woodbury KA (2013) Optimization of a cooling system based on Peltier effect for photovoltaic cells. Sol Energy 91:152–160CrossRef
4.
Zurück zum Zitat Benghanem M, Al-Mashraqi AA, Daffallah KO (2016) Performance of solar cells using thermoelectric module in hot sites. Renew Energy 89:51–59CrossRef Benghanem M, Al-Mashraqi AA, Daffallah KO (2016) Performance of solar cells using thermoelectric module in hot sites. Renew Energy 89:51–59CrossRef
5.
Zurück zum Zitat Sarhaddi F et al (2010) Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energ Buildings 42(11):2184–2199CrossRef Sarhaddi F et al (2010) Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energ Buildings 42(11):2184–2199CrossRef
6.
Zurück zum Zitat Zhang HY (2010) A general approach in evaluating and optimizing thermoelectric coolers. Int J Refrig 33(6):1187–1196CrossRef Zhang HY (2010) A general approach in evaluating and optimizing thermoelectric coolers. Int J Refrig 33(6):1187–1196CrossRef
7.
Zurück zum Zitat Wong LT, Chow WK (2001) Solar radiation model. Appl Energy 69(3):191–224CrossRef Wong LT, Chow WK (2001) Solar radiation model. Appl Energy 69(3):191–224CrossRef
Metadaten
Titel
Thermoelectric Cooling of a Photovoltaic Panel
verfasst von
Hossein Moshfegh
Mohammad Eslami
Arian Hosseini
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-89845-2_44