Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

27.05.2019

Thermoelectric properties of BiSbTe/graphene nanocomposites

verfasst von: Kaleem Ahmad, C. Wan, Peng-an Zong

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, BiSbTe based graphene composites with different vol% of graphene were processed by the pressure assisted high frequency induction heated sintering. The exfoliated graphene was uniformly dispersed in the BiSbTe powder through magnetic stirring and ball milling. The pristine BiSbTe and composites powders were consolidated by the high frequency induction heated sintering. Thermoelectric properties of the developed bulks were investigated in the temperature range 300–500 K. The results suggest that ball milling as well as incorporation of graphene substantially changes the transport properties of nanostructured BiSbTe composites from pristine bulk. The electrical conductivity of the composites degraded somewhat gradually with the addition of graphene. The effective thermal conductivity reduces by incorporation of graphene, which is attributed to increased phonon scattering by the enormous nanostructured phase boundaries and graphene. The enhanced Seebeck coefficient accompanied by the reduction in thermal conductivity leads to improved figure of merit up to ~ 1.2 at ~ 375 K for 0.5 vol% graphene/BiSbTe composite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015)CrossRef C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015)CrossRef
2.
Zurück zum Zitat M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRef M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRef
3.
Zurück zum Zitat J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010)CrossRef J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010)CrossRef
4.
Zurück zum Zitat B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)CrossRef B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)CrossRef
5.
Zurück zum Zitat Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. Jiang, G. Xu, Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition. J. Mater. Chem. A 2, 8512–8516 (2014)CrossRef Y. Xiao, G. Chen, H. Qin, M. Wu, Z. Xiao, J. Jiang, J. Xu, H. Jiang, G. Xu, Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition. J. Mater. Chem. A 2, 8512–8516 (2014)CrossRef
6.
Zurück zum Zitat Y. Li, D. Li, X. Qin, X. Yang, Y. Liu, J. Zhang, Y. Dou, C. Song, H. Xin, Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions. J. Mater. Chem. C 3, 7045–7052 (2015)CrossRef Y. Li, D. Li, X. Qin, X. Yang, Y. Liu, J. Zhang, Y. Dou, C. Song, H. Xin, Enhanced thermoelectric performance through carrier scattering at heterojunction potentials in BiSbTe based composites with Cu3SbSe4 nanoinclusions. J. Mater. Chem. C 3, 7045–7052 (2015)CrossRef
7.
Zurück zum Zitat D. Suh, S. Lee, H. Mun, S.H. Park, K.H. Lee, S.W. Kim, J.Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015)CrossRef D. Suh, S. Lee, H. Mun, S.H. Park, K.H. Lee, S.W. Kim, J.Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015)CrossRef
8.
Zurück zum Zitat W.H. Shin, K. Ahn, M. Jeong, J.S. Yoon, J.M. Song, S. Lee, W.S. Seo, Y.S. Lim, Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth-antimony-telluride by lattice thermal conductivity reduction. J. Alloys Compd. 718, 342–348 (2017)CrossRef W.H. Shin, K. Ahn, M. Jeong, J.S. Yoon, J.M. Song, S. Lee, W.S. Seo, Y.S. Lim, Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth-antimony-telluride by lattice thermal conductivity reduction. J. Alloys Compd. 718, 342–348 (2017)CrossRef
10.
Zurück zum Zitat K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites. Appl. Surf. Sci. 474, 2–8 (2019)CrossRef K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Enhanced thermoelectric performance of Bi2Te3 based graphene nanocomposites. Appl. Surf. Sci. 474, 2–8 (2019)CrossRef
11.
Zurück zum Zitat G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)CrossRef G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)CrossRef
12.
Zurück zum Zitat K. Ahmad, W. Pan, H. Wu, High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. RSC Adv. 5, 33607–33614 (2015)CrossRef K. Ahmad, W. Pan, H. Wu, High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. RSC Adv. 5, 33607–33614 (2015)CrossRef
13.
Zurück zum Zitat J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of PbTe-graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1, 12503–12511 (2013)CrossRef J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, In situ synthesis and thermoelectric properties of PbTe-graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1, 12503–12511 (2013)CrossRef
14.
Zurück zum Zitat P.-A. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G.J. Snyder, L. Chen, Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183–191 (2017)CrossRef P.-A. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G.J. Snyder, L. Chen, Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183–191 (2017)CrossRef
15.
Zurück zum Zitat H. Sevinçli, G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)CrossRef H. Sevinçli, G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)CrossRef
16.
Zurück zum Zitat P.-A. Zong, X. Chen, Y. Zhu, Z. Liu, Y. Zeng, L. Chen, Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance. J. Mater. Chem. A 3, 8643–8649 (2015)CrossRef P.-A. Zong, X. Chen, Y. Zhu, Z. Liu, Y. Zeng, L. Chen, Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance. J. Mater. Chem. A 3, 8643–8649 (2015)CrossRef
17.
Zurück zum Zitat K. Ahmad, C. Wan, M.A. Al-Eshaikh, Effect of uniform dispersion of single-wall carbon nanotubes on the thermoelectric properties of BiSbTe-based nanocomposites. J. Electron. Mater. 46, 1348–1357 (2017)CrossRef K. Ahmad, C. Wan, M.A. Al-Eshaikh, Effect of uniform dispersion of single-wall carbon nanotubes on the thermoelectric properties of BiSbTe-based nanocomposites. J. Electron. Mater. 46, 1348–1357 (2017)CrossRef
18.
Zurück zum Zitat A. Kaleem, W. Chunlei, Enhanced thermoelectric performance of Bi2 Te3 through uniform dispersion of single wall carbon nanotubes. Nanotechnology 28, 415402 (2017)CrossRef A. Kaleem, W. Chunlei, Enhanced thermoelectric performance of Bi2 Te3 through uniform dispersion of single wall carbon nanotubes. Nanotechnology 28, 415402 (2017)CrossRef
19.
Zurück zum Zitat K. Ahmad, W. Pan, Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc. 35, 663–671 (2015)CrossRef K. Ahmad, W. Pan, Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. J. Eur. Ceram. Soc. 35, 663–671 (2015)CrossRef
20.
Zurück zum Zitat L. Xue, Z. Zhang, W. Shen, H. Ma, Y. Zhang, C. Fang, X. Jia, Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis. J. Materiomics 5, 103–110 (2019)CrossRef L. Xue, Z. Zhang, W. Shen, H. Ma, Y. Zhang, C. Fang, X. Jia, Thermoelectric performance of Cu2Se bulk materials by high-temperature and high-pressure synthesis. J. Materiomics 5, 103–110 (2019)CrossRef
21.
Zurück zum Zitat H. Xian, T. Peng, H. Sun, J. Wang, Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. J. Mater. Sci. 50, 4025–4033 (2015)CrossRef H. Xian, T. Peng, H. Sun, J. Wang, Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. J. Mater. Sci. 50, 4025–4033 (2015)CrossRef
22.
Zurück zum Zitat H. Ju, J. Kim, The effect of temperature on thermoelectric properties of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid composites. Dalton Trans. 44, 11755–11762 (2015)CrossRef H. Ju, J. Kim, The effect of temperature on thermoelectric properties of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid composites. Dalton Trans. 44, 11755–11762 (2015)CrossRef
23.
Zurück zum Zitat Q. Jiang, H. Yan, J. Khaliq, H. Ning, S. Grasso, K. Simpson, M.J. Reece, Large zT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J. Mater. Chem. A 2, 5785–5790 (2014)CrossRef Q. Jiang, H. Yan, J. Khaliq, H. Ning, S. Grasso, K. Simpson, M.J. Reece, Large zT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J. Mater. Chem. A 2, 5785–5790 (2014)CrossRef
24.
Zurück zum Zitat S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015)CrossRef S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015)CrossRef
25.
Zurück zum Zitat C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)CrossRef C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, Simultaneous increase in conductivity and phonon scattering in a graphene nanosheets/(Bi2Te3)0.2(Sb2Te3)0.8 thermoelectric nanocomposite. J. Alloys Compd. 661, 389–395 (2016)CrossRef
26.
Zurück zum Zitat D. Suh, S. Lee, H. Mun, S.-H. Park, K.H. Lee, S. Wng Kim, J.-Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015)CrossRef D. Suh, S. Lee, H. Mun, S.-H. Park, K.H. Lee, S. Wng Kim, J.-Y. Choi, S. Baik, Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy 13, 67–76 (2015)CrossRef
27.
Zurück zum Zitat H. Ju, J. Kim, Preparation and structure dependent thermoelectric properties of nanostructured bulk bismuth telluride with graphene. J. Alloys Compd. 664, 639–647 (2016)CrossRef H. Ju, J. Kim, Preparation and structure dependent thermoelectric properties of nanostructured bulk bismuth telluride with graphene. J. Alloys Compd. 664, 639–647 (2016)CrossRef
28.
Zurück zum Zitat J. Li, Q. Tan, J.-F. Li, D.-W. Liu, F. Li, Z.-Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high zT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317–4323 (2013)CrossRef J. Li, Q. Tan, J.-F. Li, D.-W. Liu, F. Li, Z.-Y. Li, M. Zou, K. Wang, BiSbTe-based nanocomposites with high zT: the effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 23, 4317–4323 (2013)CrossRef
29.
Zurück zum Zitat Y. Pan, T.-R. Wei, Q. Cao, J.-F. Li, Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater. Sci. Eng. B 197, 75–81 (2015)CrossRef Y. Pan, T.-R. Wei, Q. Cao, J.-F. Li, Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater. Sci. Eng. B 197, 75–81 (2015)CrossRef
30.
Zurück zum Zitat C. Chen, D.-W. Liu, B.-P. Zhang, J.-F. Li, Enhanced thermoelectric properties obtained by compositional optimization in p-type Bix Sb2−x Te3 fabricated by mechanical alloying and spark plasma sintering. J. Electron. Mater. 40, 942–947 (2011)CrossRef C. Chen, D.-W. Liu, B.-P. Zhang, J.-F. Li, Enhanced thermoelectric properties obtained by compositional optimization in p-type Bix Sb2−x Te3 fabricated by mechanical alloying and spark plasma sintering. J. Electron. Mater. 40, 942–947 (2011)CrossRef
31.
Zurück zum Zitat A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)CrossRef A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569 (2011)CrossRef
32.
Zurück zum Zitat M. Sharafat Hossain, F. Al-Dirini, F.M. Hossain, E. Skafidas, High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci. Rep. 5, 11297 (2015)CrossRef M. Sharafat Hossain, F. Al-Dirini, F.M. Hossain, E. Skafidas, High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci. Rep. 5, 11297 (2015)CrossRef
33.
Zurück zum Zitat Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580–2584 (2008)CrossRef Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580–2584 (2008)CrossRef
34.
Zurück zum Zitat D.W. Xie, J.T. Xu, G.Q. Liu, Z. Liu, H.Z. Shao, X.J. Tan, J. Jiang, H.C. Jiang, Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite. Energies 9, 236 (2016)CrossRef D.W. Xie, J.T. Xu, G.Q. Liu, Z. Liu, H.Z. Shao, X.J. Tan, J. Jiang, H.C. Jiang, Synergistic optimization of thermoelectric performance in p-type Bi0.48Sb1.52Te3/graphene composite. Energies 9, 236 (2016)CrossRef
35.
Zurück zum Zitat I. Barin, Thermochemical data of pure substances, 2nd edn. (VCH, Weinheim, 1993), pp. 1–1739 I. Barin, Thermochemical data of pure substances, 2nd edn. (VCH, Weinheim, 1993), pp. 1–1739
36.
Zurück zum Zitat J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A 74, 339–343 (2002)CrossRef J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A 74, 339–343 (2002)CrossRef
37.
Zurück zum Zitat P. Miranzo, E. García, C. Ramírez, J. González-Julián, M. Belmonte, M. Isabel Osendi, Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 32, 1847–1854 (2012)CrossRef P. Miranzo, E. García, C. Ramírez, J. González-Julián, M. Belmonte, M. Isabel Osendi, Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 32, 1847–1854 (2012)CrossRef
38.
Zurück zum Zitat E.L. Corral, H. Wang, J. Garay, Z. Munir, E.V. Barrera, Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering. J. Eur. Ceram. Soc. 31, 391–400 (2011)CrossRef E.L. Corral, H. Wang, J. Garay, Z. Munir, E.V. Barrera, Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering. J. Eur. Ceram. Soc. 31, 391–400 (2011)CrossRef
39.
Zurück zum Zitat Q. Huang, L. Gao, Y. Liu, J. Sun, Sintering and thermal properties of multiwalled carbon nanotube–BaTiO3 composites. J. Mater. Chem. 15, 1995–2001 (2005)CrossRef Q. Huang, L. Gao, Y. Liu, J. Sun, Sintering and thermal properties of multiwalled carbon nanotube–BaTiO3 composites. J. Mater. Chem. 15, 1995–2001 (2005)CrossRef
40.
Zurück zum Zitat T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006)CrossRef T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2006)CrossRef
41.
Zurück zum Zitat X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)CrossRef X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)CrossRef
Metadaten
Titel
Thermoelectric properties of BiSbTe/graphene nanocomposites
verfasst von
Kaleem Ahmad
C. Wan
Peng-an Zong
Publikationsdatum
27.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01538-z

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt