Skip to main content
Erschienen in: Tribology Letters 1/2018

01.03.2018 | Original Paper

Thickening Mechanisms of Polyisobutylene in Polyalphaolefin

verfasst von: Michelle Len, Uma Shantini Ramasamy, Seth Lichter, Ashlie Martini

Erschienen in: Tribology Letters | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics simulations are used to study the effect of polyisobutylene polymer on the viscosity of polyalphaolefin base oil. The Newtonian viscosities of the solution calculated from simulations at 40 and 100 °C agree with rheometer measurements. The simulations are used to investigate three possible mechanisms by which the polymer may increase solution viscosity. The results indicate that neither (1) coil expansion nor (2) polymer–polymer association underlie viscosity enhancement in the case studied here. Measurements of solvent reorientation close to the additive molecule suggest that (3) modification of the solvent by the additive molecule contributes to viscosity enhancement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Canter, N.: Viscosity index improvers. Tribol. Lubr. Technol. 67(9), 10–22 (2011) Canter, N.: Viscosity index improvers. Tribol. Lubr. Technol. 67(9), 10–22 (2011)
2.
Zurück zum Zitat Ghosh, P., Das, M.: Study of the influence of some polymeric additives as viscosity index improvers and pour point depressants synthesis and characterization. J. Pet. Sci. Eng. 119, 79–84 (2014)CrossRef Ghosh, P., Das, M.: Study of the influence of some polymeric additives as viscosity index improvers and pour point depressants synthesis and characterization. J. Pet. Sci. Eng. 119, 79–84 (2014)CrossRef
3.
Zurück zum Zitat Nassar, A.M.: Synthesis and evaluation of viscosity index improvers and pour point depressant for lube oil. Pet. Sci. Technol. 26(8), 523–531 (2008)CrossRef Nassar, A.M.: Synthesis and evaluation of viscosity index improvers and pour point depressant for lube oil. Pet. Sci. Technol. 26(8), 523–531 (2008)CrossRef
4.
Zurück zum Zitat Stöhr, T., Eisenberg, B., Müller, M.: A new generation of high performance viscosity modifiers based on comb polymers. SAE Int. J. Fuels Lubr. 1(1), 1511–1516 (2008)CrossRef Stöhr, T., Eisenberg, B., Müller, M.: A new generation of high performance viscosity modifiers based on comb polymers. SAE Int. J. Fuels Lubr. 1(1), 1511–1516 (2008)CrossRef
5.
Zurück zum Zitat Selby, T.W.: The non-newtonian characteristics of lubricating oils. ASLE Trans. 1(1), 68–81 (1958)CrossRef Selby, T.W.: The non-newtonian characteristics of lubricating oils. ASLE Trans. 1(1), 68–81 (1958)CrossRef
6.
Zurück zum Zitat de Gennes, P.G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(2), 572–579 (1971)CrossRef de Gennes, P.G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(2), 572–579 (1971)CrossRef
7.
Zurück zum Zitat Ferry, J.D.: Viscoelastic properties of polymer solutions. J. Res. Natl. Bur. Stand. 41(1), 53–61 (1948)CrossRef Ferry, J.D.: Viscoelastic properties of polymer solutions. J. Res. Natl. Bur. Stand. 41(1), 53–61 (1948)CrossRef
8.
Zurück zum Zitat Schulz, D.N., Glass, J.E.: Polymers as Rheology Modifiers. American Chemical Society, Washington, DC (1991)CrossRef Schulz, D.N., Glass, J.E.: Polymers as Rheology Modifiers. American Chemical Society, Washington, DC (1991)CrossRef
9.
Zurück zum Zitat Longworth, R., Morawetz, H.: Polymer association. IV. Hydrogen bonding and melt viscosities in copolymers of styrene with methacrylic acid. J. Polym. Sci. 29(119), 307–319 (1958)CrossRef Longworth, R., Morawetz, H.: Polymer association. IV. Hydrogen bonding and melt viscosities in copolymers of styrene with methacrylic acid. J. Polym. Sci. 29(119), 307–319 (1958)CrossRef
10.
Zurück zum Zitat Yekta, A., Xu, B., Duhamel, J., Adiwidjaja, H., Winnik, M.A.: Fluorescence studies of associating polymers in water: determination of the chain end aggregation number and a model for the association process. Macromolecules 28(4), 956–966 (1995)CrossRef Yekta, A., Xu, B., Duhamel, J., Adiwidjaja, H., Winnik, M.A.: Fluorescence studies of associating polymers in water: determination of the chain end aggregation number and a model for the association process. Macromolecules 28(4), 956–966 (1995)CrossRef
11.
Zurück zum Zitat Rouse Jr., P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7), 1272–1280 (1953)CrossRef Rouse Jr., P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7), 1272–1280 (1953)CrossRef
12.
Zurück zum Zitat Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRef Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRef
13.
Zurück zum Zitat Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)CrossRef
14.
Zurück zum Zitat Siu, S.W.I., Pluhackova, K., Böckmann, R.A.: Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8(4), 1459–1470 (2012)CrossRef Siu, S.W.I., Pluhackova, K., Böckmann, R.A.: Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8(4), 1459–1470 (2012)CrossRef
15.
Zurück zum Zitat Ye, X., Cui, S., de Almeida, Valmor F., Khomami, B., Khomami, B.: Effect of varying the 1–4 intramolecular scaling factor in atomistic simulations of long-chain n-alkanes with the OPLS-AA model. J. Mol. Model. 19(3), 1251–1258 (2013)CrossRef Ye, X., Cui, S., de Almeida, Valmor F., Khomami, B., Khomami, B.: Effect of varying the 1–4 intramolecular scaling factor in atomistic simulations of long-chain n-alkanes with the OPLS-AA model. J. Mol. Model. 19(3), 1251–1258 (2013)CrossRef
16.
Zurück zum Zitat Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984)CrossRef Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984)CrossRef
17.
Zurück zum Zitat Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)CrossRef Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)CrossRef
18.
Zurück zum Zitat Kelkar, M.S., Rafferty, J.L., Maginn, E.J., Siepmann, J.I.: Prediction of viscosities and vapor–liquid equilibria for five polyhydric alcohols by molecular simulation. Fluid Phase Equilib. 260, 218–231 (2007)CrossRef Kelkar, M.S., Rafferty, J.L., Maginn, E.J., Siepmann, J.I.: Prediction of viscosities and vapor–liquid equilibria for five polyhydric alcohols by molecular simulation. Fluid Phase Equilib. 260, 218–231 (2007)CrossRef
19.
Zurück zum Zitat Müller-Plathe, F.: Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys. Rev. E 59, 4894–4898 (1999)CrossRef Müller-Plathe, F.: Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys. Rev. E 59, 4894–4898 (1999)CrossRef
20.
Zurück zum Zitat Tenney, C.M., Maginn, E.J.: Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. J. Chem. Phys. 132(1), 014103 (2010)CrossRef Tenney, C.M., Maginn, E.J.: Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics. J. Chem. Phys. 132(1), 014103 (2010)CrossRef
21.
Zurück zum Zitat Ramasamy, U.S., Len, M., Martini, A.: Correlating molecular structure to the behavior of linear styrene–butadiene viscosity modifiers. Tribol. Lett. 65(4), 147 (2017)CrossRef Ramasamy, U.S., Len, M., Martini, A.: Correlating molecular structure to the behavior of linear styrene–butadiene viscosity modifiers. Tribol. Lett. 65(4), 147 (2017)CrossRef
22.
Zurück zum Zitat Bhattacharya, P., Ramasamy, U.S., Krueger, S., Robinson, J.W., Tarasevich, B.J., Martini, A., Cosimbescu, L.: Trends in thermoresponsive behavior of lipophilic polymers. Ind. Eng. Chem. Res. 55(51), 12983–12990 (2016)CrossRef Bhattacharya, P., Ramasamy, U.S., Krueger, S., Robinson, J.W., Tarasevich, B.J., Martini, A., Cosimbescu, L.: Trends in thermoresponsive behavior of lipophilic polymers. Ind. Eng. Chem. Res. 55(51), 12983–12990 (2016)CrossRef
23.
Zurück zum Zitat Covitch, M.J., Trickett, K.J.: How polymers behave as viscosity index improvers in lubricating oils. Adv. Chem. Eng. Sci. 5(2), 134–151 (2015)CrossRef Covitch, M.J., Trickett, K.J.: How polymers behave as viscosity index improvers in lubricating oils. Adv. Chem. Eng. Sci. 5(2), 134–151 (2015)CrossRef
24.
Zurück zum Zitat Ramasamy, U.S., Lichter, S., Martini, A.: Effect of molecular-scale features on the polymer coil size of model viscosity index improvers. Tribol. Lett. 62(23), 1–7 (2016) Ramasamy, U.S., Lichter, S., Martini, A.: Effect of molecular-scale features on the polymer coil size of model viscosity index improvers. Tribol. Lett. 62(23), 1–7 (2016)
25.
Zurück zum Zitat Jacobs, T.B.D., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev. 69, 061101 (2017) Jacobs, T.B.D., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev. 69, 061101 (2017)
26.
Zurück zum Zitat Allen, W., Rowley, R.L.: Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: evaluation of intermolecular potential models. J. Chem. Phys. 106(24), 10273–10281 (1997)CrossRef Allen, W., Rowley, R.L.: Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: evaluation of intermolecular potential models. J. Chem. Phys. 106(24), 10273–10281 (1997)CrossRef
27.
Zurück zum Zitat Ewen, J.P., Gattinoni, C., Thakkar, F.M., Morgan, N., Spikes, H.A., Dini, D.: A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9(8), 651 (2016)CrossRef Ewen, J.P., Gattinoni, C., Thakkar, F.M., Morgan, N., Spikes, H.A., Dini, D.: A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9(8), 651 (2016)CrossRef
29.
Zurück zum Zitat Singh, H., Gulati, I.B.: Influence of base oil refining on the performance of viscosity index improvers. Wear 118(1), 33–56 (1987)CrossRef Singh, H., Gulati, I.B.: Influence of base oil refining on the performance of viscosity index improvers. Wear 118(1), 33–56 (1987)CrossRef
30.
Zurück zum Zitat Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953) Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)
31.
Zurück zum Zitat Grosberg, A.Y., Kuznetsov, D.V.: Quantitative theory of the globule-to-coil transition. 1. Link density distribution in a globule and its radius of gyration. Macromolecules 25(7), 1970–1979 (1992)CrossRef Grosberg, A.Y., Kuznetsov, D.V.: Quantitative theory of the globule-to-coil transition. 1. Link density distribution in a globule and its radius of gyration. Macromolecules 25(7), 1970–1979 (1992)CrossRef
32.
Zurück zum Zitat Mazur, J., McIntyre, D.: The determination of chain statistical parameters by light scattering measurements. Macromolecules 8(4), 464–476 (1975)CrossRef Mazur, J., McIntyre, D.: The determination of chain statistical parameters by light scattering measurements. Macromolecules 8(4), 464–476 (1975)CrossRef
33.
Zurück zum Zitat Mary, C., Phillipon, D., Lafarge, L., Laurent, D., Rondelez, F., Bair, S., Vergne, P.: New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure. Tribol. Lett. 52, 357–369 (2013)CrossRef Mary, C., Phillipon, D., Lafarge, L., Laurent, D., Rondelez, F., Bair, S., Vergne, P.: New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure. Tribol. Lett. 52, 357–369 (2013)CrossRef
Metadaten
Titel
Thickening Mechanisms of Polyisobutylene in Polyalphaolefin
verfasst von
Michelle Len
Uma Shantini Ramasamy
Seth Lichter
Ashlie Martini
Publikationsdatum
01.03.2018
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2018
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-017-0960-3

Weitere Artikel der Ausgabe 1/2018

Tribology Letters 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.