Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 4/2024

02.03.2024 | Original Article

Thickness and design features of clinical cranial implants—what should automated methods strive to replicate?

verfasst von: Z. Fishman, James G. Mainprize, Glenn Edwards, Oleh Antonyshyn, Michael Hardisty, C. M. Whyne

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

New deep learning and statistical shape modelling approaches aim to automate the design process for patient-specific cranial implants, as highlighted by the MICCAI AutoImplant Challenges. To ensure applicability, it is important to determine if the training data used in developing these algorithms represent the geometry of implants designed for clinical use.

Methods

Calavera Surgical Design provided a dataset of 206 post-craniectomy skull geometries and their clinically used implants. The MUG500+ dataset includes 29 post-craniectomy skull geometries and implants designed for automating design. For both implant and skull shapes, the inner and outer cortical surfaces were segmented, and the thickness between them was measured. For the implants, a ‘rim’ was defined that transitions from the repaired defect to the surrounding skull. For unilateral defect cases, skull implants were mirrored to the contra-lateral side and thickness differences were quantified.

Results

The average thickness of the clinically used implants was 6.0 ± 0.5 mm, which approximates the thickness on the contra-lateral side of the skull (relative difference of −0.3 ± 1.4 mm). The average thickness of the MUG500+ implants was 2.9 ± 1.0 mm, significantly thinner than the intact skull thickness (relative difference of 2.9 ± 1.2 mm). Rim transitions in the clinical implants (average width of 8.3 ± 3.4 mm) were used to cap and create a smooth boundary with the skull.

Conclusions

For implant modelers or manufacturers, this shape analysis quantified differences of cranial implants (thickness, rim width, surface area, and volume) to help guide future automated design algorithms. After skull completion, a thicker implant can be more versatile for cases involving muscle hollowing or thin skulls, and wider rims can smooth over the defect margins to provide more stability. For clinicians, the differing measurements and implant designs can help inform the options available for their patient specific treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Morales-Gómez JA, Garcia-Estrada E, Leos-Bortoni JE, Delgado-Brito M, Flores-Huerta LE, De La Cruz-Arriaga AA, Torres-Díaz LJ, Martínez-Ponce de León ÁR (2019) Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. J Neurosurg 130:1721–1727. https://doi.org/10.3171/2017.12.JNS172574CrossRef Morales-Gómez JA, Garcia-Estrada E, Leos-Bortoni JE, Delgado-Brito M, Flores-Huerta LE, De La Cruz-Arriaga AA, Torres-Díaz LJ, Martínez-Ponce de León ÁR (2019) Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. J Neurosurg 130:1721–1727. https://​doi.​org/​10.​3171/​2017.​12.​JNS172574CrossRef
4.
Zurück zum Zitat Li J, Egger J (2020) Towards the automatization of cranial implant design in cranioplasty. In: Li J, Egger J (eds) First challenge, AutoImplant 2020, Held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings. Springer International Publishing Li J, Egger J (2020) Towards the automatization of cranial implant design in cranioplasty. In: Li J, Egger J (eds) First challenge, AutoImplant 2020, Held in conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings. Springer International Publishing
5.
Zurück zum Zitat Li J, Egger J (2021) Towards the automatization of cranial implant design in cranioplasty II. In: Li J, Egger J (eds) Second challenge, AutoImplant 2021, Held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings. Springer International Publishing Li J, Egger J (2021) Towards the automatization of cranial implant design in cranioplasty II. In: Li J, Egger J (eds) Second challenge, AutoImplant 2021, Held in conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings. Springer International Publishing
6.
Zurück zum Zitat Mainprize JG, Fishman Z, Hardisty MR (2020) Shape completion by U-Net: an approach to the autoimplant MICCAI cranial implant design challenge. In: Li J, Egger J (eds) Towards the automatization of cranial implant design in cranioplasty. AutoImplant 2020. Springer International Publishing, Berlin, pp 65–76CrossRef Mainprize JG, Fishman Z, Hardisty MR (2020) Shape completion by U-Net: an approach to the autoimplant MICCAI cranial implant design challenge. In: Li J, Egger J (eds) Towards the automatization of cranial implant design in cranioplasty. AutoImplant 2020. Springer International Publishing, Berlin, pp 65–76CrossRef
7.
Zurück zum Zitat Mahdi H, Clement A, Kim E, Fishman Z, Whyne CMM, Mainprize JG, Hardisty MR (2021) A U-Net based system for cranial implant design with pre-processing and learned implant filtering. In: Li J, Egger J (eds) Towards the automatization of cranial implant design in cranioplasty II. Springer International Publishing, Berlin, pp 63–79CrossRef Mahdi H, Clement A, Kim E, Fishman Z, Whyne CMM, Mainprize JG, Hardisty MR (2021) A U-Net based system for cranial implant design with pre-processing and learned implant filtering. In: Li J, Egger J (eds) Towards the automatization of cranial implant design in cranioplasty II. Springer International Publishing, Berlin, pp 63–79CrossRef
8.
Zurück zum Zitat Li J, Pimentel P, Szengel A, Ehlke M, Lamecker H, Zachow S, Estacio L, Doenitz C, Ramm H, Shi H, Chen X, Matzkin F, Newcombe V, Ferrante E, Jin Y, Ellis DG, Aizenberg MR, Kodym O, Spanel M, Herout A, Mainprize JG, Fishman Z, Hardisty MR, Bayat A, Shit S, Wang B, Liu Z, Eder M, Pepe A, Gsaxner C, Alves V, Zefferer U, Von Campe G, Pistracher K, Schafer U, Schmalstieg D, Menze BH, Glocker B, Egger J (2021) AutoImplant 2020-first MICCAI challenge on automatic cranial implant design. IEEE Trans Med Imag 40:2329–2342. https://doi.org/10.1109/TMI.2021.3077047CrossRef Li J, Pimentel P, Szengel A, Ehlke M, Lamecker H, Zachow S, Estacio L, Doenitz C, Ramm H, Shi H, Chen X, Matzkin F, Newcombe V, Ferrante E, Jin Y, Ellis DG, Aizenberg MR, Kodym O, Spanel M, Herout A, Mainprize JG, Fishman Z, Hardisty MR, Bayat A, Shit S, Wang B, Liu Z, Eder M, Pepe A, Gsaxner C, Alves V, Zefferer U, Von Campe G, Pistracher K, Schafer U, Schmalstieg D, Menze BH, Glocker B, Egger J (2021) AutoImplant 2020-first MICCAI challenge on automatic cranial implant design. IEEE Trans Med Imag 40:2329–2342. https://​doi.​org/​10.​1109/​TMI.​2021.​3077047CrossRef
9.
Zurück zum Zitat Li J, Ellis DG, Kodym O, Rauschenbach L, Ries C, Sure U, Wrede KH, Alvarez CM, Wodzinski M, Daniol M, Hemmerling D, Mahdi H, Clement A, Kim E, Fishman Z, Whyne CM, Mainprize JG, Hardisty MR, Pathak S, Sindhura C, Gorth RKSS, Kiran DV, Gorthi S, Yang B, Fang K, Li X, Kroviakov A, Yu L, Pepe A, Gsaxner C, Herout A, Alves V, Spanel M, Aizenberg MR, Kleesiek J, Egger J (2022) Towards clinical applicability and computation efficiency in automatic cranial implant design: an overview of the AutoImplant 2021 cranial implant design challenge. Med Image Anal. In Submission Li J, Ellis DG, Kodym O, Rauschenbach L, Ries C, Sure U, Wrede KH, Alvarez CM, Wodzinski M, Daniol M, Hemmerling D, Mahdi H, Clement A, Kim E, Fishman Z, Whyne CM, Mainprize JG, Hardisty MR, Pathak S, Sindhura C, Gorth RKSS, Kiran DV, Gorthi S, Yang B, Fang K, Li X, Kroviakov A, Yu L, Pepe A, Gsaxner C, Herout A, Alves V, Spanel M, Aizenberg MR, Kleesiek J, Egger J (2022) Towards clinical applicability and computation efficiency in automatic cranial implant design: an overview of the AutoImplant 2021 cranial implant design challenge. Med Image Anal. In Submission
11.
Zurück zum Zitat Ellis DG, Alvarez CM, Aizenberg MR (2021) Qualitative criteria for feasible cranial implant designs. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Springer International Publishing, Cham, pp 8–18 Ellis DG, Alvarez CM, Aizenberg MR (2021) Qualitative criteria for feasible cranial implant designs. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Springer International Publishing, Cham, pp 8–18
23.
Zurück zum Zitat Antonyshyn OM, Edwards G, Mainprize J (2012) Patent US 2012/0010711 A1: method of forming patient-specific implant Antonyshyn OM, Edwards G, Mainprize J (2012) Patent US 2012/0010711 A1: method of forming patient-specific implant
Metadaten
Titel
Thickness and design features of clinical cranial implants—what should automated methods strive to replicate?
verfasst von
Z. Fishman
James G. Mainprize
Glenn Edwards
Oleh Antonyshyn
Michael Hardisty
C. M. Whyne
Publikationsdatum
02.03.2024
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 4/2024
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-024-03068-4

Weitere Artikel der Ausgabe 4/2024

International Journal of Computer Assisted Radiology and Surgery 4/2024 Zur Ausgabe

Premium Partner