Skip to main content
Erschienen in: Journal of Nanoparticle Research 9/2011

01.09.2011 | Research Paper

Thickness dependent phase transformation of magnetron-sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin films

verfasst von: Ritu Vishnoi, Rahul Singhal, Davinder Kaur

Erschienen in: Journal of Nanoparticle Research | Ausgabe 9/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the influence of film thickness on the first-order martensite–austenite phase transformation of Ni–Mn–Sn ferromagnetic shape memory alloy thin films has been systematically investigated. Different thicknesses of the Ni–Mn–Sn films (from ~100 to 2,500 nm) were deposited by DC magnetron sputtering on Si (100) substrates at 550 °C. X-ray analysis reveals that all the films exhibit austenitic phase with the L21 cubic crystal structure at room temperature. The grain size and crystallization extent increase with the increase in film thickness, but the films with thickness above ~1,400 nm show structural deterioration due to the formation of MnSn2 and Ni3Sn4 precipitates. The improvement in the crystallinity of the film with thickness is attributed to the decrease in film–substrate interfacial strain resulting in preferred oriented growth of the films. Temperature-dependent magnetization measurements as well as electrical measurements demonstrate the complete absence of phase transformation for the film of thickness of ~120 nm. For thickness greater than 400 nm, film exhibits the structural transformation, and it occurs at higher temperature with better hysteresis as film thickness is increased up to ~1,400 nm, after which degradation of phase transformation phenomenon is observed. This degradation is attributed to the disorders present in the films at higher thicknesses. Film with thickness ~1,400 nm possesses the highest magnetization with the smallest thermal hysteresis among all the films and therefore best suited for the actuators based on first-order structural phase transformation. Nanoindentation measurements reveal that the higher values of hardness and elastic modulus of about 5.5 and 215.0 GPa obtained in film of 1,014 nm thickness can considerably improve the ductility of ferromagnetic shape memory alloys (FSMA) and their applicability for MEMS applications. The exchange bias phenomenon is also found to be present in the films of thickness 1014, 1412, and 2022 nm exhibiting prominent martensitic transformation. Film of thickness 2,022 nm exhibits maximum exchange bias of ~50 Oe and higher exchange bias blocking temperature of 70 K as compared to other films.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brown PJ, Gandy AP, Ishida K, Kainuma R, Kanomata T, Neumann KU, Oikata K, Ouladdiaf B, Ziebeck KRA (2006) The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J Phys Condens Matter 18:2249–2259. doi:10.1088/0953-8984/18/7/012 CrossRef Brown PJ, Gandy AP, Ishida K, Kainuma R, Kanomata T, Neumann KU, Oikata K, Ouladdiaf B, Ziebeck KRA (2006) The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J Phys Condens Matter 18:2249–2259. doi:10.​1088/​0953-8984/​18/​7/​012 CrossRef
Zurück zum Zitat Chattopadhyay PP, Nambissan PMG, Pabi SK, Manna I (2001) Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation. Phys Rev B 63:054107-1–054107-7. doi:10.1103/PhysRevB.63.054107 Chattopadhyay PP, Nambissan PMG, Pabi SK, Manna I (2001) Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation. Phys Rev B 63:054107-1–054107-7. doi:10.​1103/​PhysRevB.​63.​054107
Zurück zum Zitat Cullity BD (1977) Elements of X-ray diffraction. Addison Wesley, Reading Cullity BD (1977) Elements of X-ray diffraction. Addison Wesley, Reading
Zurück zum Zitat Dong JW, Xie JQ, Lu J, Adelmann C, Palmstrom CJ, Cui J, Pan Q, Shield TW, James RD, Mckernan S (2004) Shape memory and ferromagnetic shape memory effects in single-crystal Ni2MnGa thin films. J Appl Phys 95:2593–2600. doi:10.1063/1.1643199 CrossRef Dong JW, Xie JQ, Lu J, Adelmann C, Palmstrom CJ, Cui J, Pan Q, Shield TW, James RD, Mckernan S (2004) Shape memory and ferromagnetic shape memory effects in single-crystal Ni2MnGa thin films. J Appl Phys 95:2593–2600. doi:10.​1063/​1.​1643199 CrossRef
Zurück zum Zitat Han ZD, Wang DH, Zhang CL, Xuan HC, Gu BX, Du YW (2007) Low-field inverse magnetocaloric effect in Ni50 − xMn39 + xSn11 Heusler alloys. Appl Phys Lett 90:042507-1–042507-3. doi:10.1063/1.2435593 Han ZD, Wang DH, Zhang CL, Xuan HC, Gu BX, Du YW (2007) Low-field inverse magnetocaloric effect in Ni50 − xMn39 + xSn11 Heusler alloys. Appl Phys Lett 90:042507-1–042507-3. doi:10.​1063/​1.​2435593
Zurück zum Zitat Heczko O, Thomas M, Buschbeck J, Schultz L, Fahler S (2008) Epitaxial Ni–Mn–Ga films deposited on SrTiO3 and evidence of magnetically induced reorientation of martensitic variants at room temperature. Appl Phys Lett 92:072502-1–072502-3. doi:10.1063/1.2883961 Heczko O, Thomas M, Buschbeck J, Schultz L, Fahler S (2008) Epitaxial Ni–Mn–Ga films deposited on SrTiO3 and evidence of magnetically induced reorientation of martensitic variants at room temperature. Appl Phys Lett 92:072502-1–072502-3. doi:10.​1063/​1.​2883961
Zurück zum Zitat Khovaylo V, Koledov V, Shavrov V, Novosad V, Korolyov A, Ohtsuka M, Saveel’eva O, Takagi T (2006) NI–Mn–Sn: novel ferromagnetic shape memory alloys. Funct Mater 13:474–477 Khovaylo V, Koledov V, Shavrov V, Novosad V, Korolyov A, Ohtsuka M, Saveel’eva O, Takagi T (2006) NI–Mn–Sn: novel ferromagnetic shape memory alloys. Funct Mater 13:474–477
Zurück zum Zitat Koyama K, Watanabe K, Kanomata T, Kainuma R, Oikawa K, Ishida K (2006) Observation of field-induced reverse transformation in ferromagnetic shape memory alloy Ni50Mn36Sn14. Appl Phys Lett 88:132505-1–132505-3. doi:10.1063/1.2189916 Koyama K, Watanabe K, Kanomata T, Kainuma R, Oikawa K, Ishida K (2006) Observation of field-induced reverse transformation in ferromagnetic shape memory alloy Ni50Mn36Sn14. Appl Phys Lett 88:132505-1–132505-3. doi:10.​1063/​1.​2189916
Zurück zum Zitat Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005a) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4:450–454. doi:10.1038/nmat1395 CrossRef Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005a) Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater 4:450–454. doi:10.​1038/​nmat1395 CrossRef
Zurück zum Zitat Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005b) Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B 72:014412-1–014412-9. doi:10.1103/PhysRevB.72.014412 Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2005b) Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B 72:014412-1–014412-9. doi:10.​1103/​PhysRevB.​72.​014412
Zurück zum Zitat Krenke T, Acet M, Wassermann EF, Moya X, Manosa L, Planes A (2006) Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B 73:174413-1–174413-10. doi:10.1103/PhysRevB.73.174413 Krenke T, Acet M, Wassermann EF, Moya X, Manosa L, Planes A (2006) Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B 73:174413-1–174413-10. doi:10.​1103/​PhysRevB.​73.​174413
Zurück zum Zitat Li Z, Jing C, Chen J, Yuan S, Cao S, Zhang J (2007) Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. Appl Phys Lett 91:112505-1–112505-3. doi:10.1063/1.2784958 Li Z, Jing C, Chen J, Yuan S, Cao S, Zhang J (2007) Observation of exchange bias in the martensitic state of Ni50Mn36Sn14 Heusler alloy. Appl Phys Lett 91:112505-1–112505-3. doi:10.​1063/​1.​2784958
Zurück zum Zitat Ni W, Cheng YT, Grummon DS (2003) Microscopic superelastic behavior of a nickel–titanium alloy under complex loading conditions. Appl Phys Lett 82:2811-1–2811-3. doi:10.1063/1.1569984 Ni W, Cheng YT, Grummon DS (2003) Microscopic superelastic behavior of a nickel–titanium alloy under complex loading conditions. Appl Phys Lett 82:2811-1–2811-3. doi:10.​1063/​1.​1569984
Zurück zum Zitat Siegel RW (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Processing of metals and alloys. VCH, Weinheim, p 583 Siegel RW (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Processing of metals and alloys. VCH, Weinheim, p 583
Zurück zum Zitat Srivastava VK, Srivastava SK, Chatterjee R, Gupta G, Shivprasad SM, Nigam AK (2009) Structural and magnetic phenomena in Ni53Mn25Al22 thin film prepared by rf magnetron sputtering. Appl Phys Lett 95:114101-1–114101-3. doi:10.1063/1.3222940 Srivastava VK, Srivastava SK, Chatterjee R, Gupta G, Shivprasad SM, Nigam AK (2009) Structural and magnetic phenomena in Ni53Mn25Al22 thin film prepared by rf magnetron sputtering. Appl Phys Lett 95:114101-1–114101-3. doi:10.​1063/​1.​3222940
Zurück zum Zitat Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa R (2004) Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett 85:4358–4360. doi:10.1063/1.1808879 CrossRef Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa R (2004) Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett 85:4358–4360. doi:10.​1063/​1.​1808879 CrossRef
Zurück zum Zitat Ullakko K, Huang JK, Kanter C, Kokorin VV, O’Handley RC (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966–1968. doi:10.1063/1.117637 CrossRef Ullakko K, Huang JK, Kanter C, Kokorin VV, O’Handley RC (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966–1968. doi:10.​1063/​1.​117637 CrossRef
Zurück zum Zitat Vishnoi R, Kaur D (2010a) Structural and magnetic properties of magnetron sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin films. J Appl Phys 107:103907-1–103907-7. doi:10.1063/1.3393961 Vishnoi R, Kaur D (2010a) Structural and magnetic properties of magnetron sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin films. J Appl Phys 107:103907-1–103907-7. doi:10.​1063/​1.​3393961
Metadaten
Titel
Thickness dependent phase transformation of magnetron-sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin films
verfasst von
Ritu Vishnoi
Rahul Singhal
Davinder Kaur
Publikationsdatum
01.09.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 9/2011
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-011-0321-3

Weitere Artikel der Ausgabe 9/2011

Journal of Nanoparticle Research 9/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.