Skip to main content

2018 | OriginalPaper | Buchkapitel

Three Different Adaptive Neuro Fuzzy Computing Techniques for Forecasting Long-Period Daily Streamflows

verfasst von : Ozgur Kisi, Jalal Shiri, Sepideh Karimi, Rana Muhammad Adnan

Erschienen in: Big Data in Engineering Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A modeling study was presented here using three different adaptive neuro-fuzzy (ANFIS) approach algorithms comprising grid partitioning (ANFIS-GP), subtractive clustering (ANFIS-SC) and fuzzy C-Means clustering (ANFIS-FCM) for forecasting long period daily streamflow magnitudes. Long-period data (between 1936 and 2016) from two hydrometric stations in USA were used for training, evaluating and testing the approaches. Five different input combinations were applied based on the autoregressive analysis of the recorded streamflow data. A sensitivity analysis was also carried out to investigate the effect of different model architectures on the obtained outcomes. When using ANFIS-GP, the double-input model gives the best results for different model architectures, while the triple-input models produce the most accurate results using both ANFIS-SC and ANFIS-FCM models, which is due to increasing the model complexity for ANFIS-GP by using more input parameters. Comparing the all three algorithms it was observed that the ANFIS-FCM generally gave the most accurate results among others.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anusree, K., & Varghese, K. O. (2016). Streamflow prediction of Karuvannur River Basin using ANFIS, ANN and MNLR models. Procedia Technology, 24, 101–108.CrossRef Anusree, K., & Varghese, K. O. (2016). Streamflow prediction of Karuvannur River Basin using ANFIS, ANN and MNLR models. Procedia Technology, 24, 101–108.CrossRef
2.
Zurück zum Zitat Aqil, M., Kita, I., Yano, A., et al. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology, 337, 22–34.CrossRef Aqil, M., Kita, I., Yano, A., et al. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology, 337, 22–34.CrossRef
3.
Zurück zum Zitat Ballini, R., Soares, S., & Andrade, M. G. (1999). Seasonal streamflow forecasting via a neural fuzzy system. In: 14th Triennial World Congress, Beijing, P.R. China (pp. 5249–5254).CrossRef Ballini, R., Soares, S., & Andrade, M. G. (1999). Seasonal streamflow forecasting via a neural fuzzy system. In: 14th Triennial World Congress, Beijing, P.R. China (pp. 5249–5254).CrossRef
4.
Zurück zum Zitat Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum.CrossRefMATH Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum.CrossRefMATH
5.
Zurück zum Zitat Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy C-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203.CrossRef Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy C-means clustering algorithm. Computers & Geosciences, 10(2–3), 191–203.CrossRef
6.
Zurück zum Zitat Chemeda Edossa, D., & Singh Babel, M. (2011). Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water Resources Management, 25, 1759–1773.CrossRef Chemeda Edossa, D., & Singh Babel, M. (2011). Application of ANN-based streamflow forecasting model for agricultural water management in the Awash River Basin, Ethiopia. Water Resources Management, 25, 1759–1773.CrossRef
7.
Zurück zum Zitat Cobaner, M. (2011). Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology, 398(3–4), 299–302. Cobaner, M. (2011). Evapotranspiration estimation by two different neuro-fuzzy inference systems. Journal of Hydrology, 398(3–4), 299–302.
8.
Zurück zum Zitat Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.MathSciNetCrossRefMATH Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57.MathSciNetCrossRefMATH
9.
Zurück zum Zitat El-Shafie, A., Taha, M. R., & Noureldin, A. (2007). A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan high dam. Water Resources Management, 21, 533–556.CrossRef El-Shafie, A., Taha, M. R., & Noureldin, A. (2007). A neuro-fuzzy model for inflow forecasting of the Nile River at Aswan high dam. Water Resources Management, 21, 533–556.CrossRef
10.
Zurück zum Zitat Gunduz, O., & Aral, M. M. (2005). River networks and groundwater flow: A simultaneous solution of a coupled system. Journal of Hydrology, 301(1–4), 216–234.CrossRef Gunduz, O., & Aral, M. M. (2005). River networks and groundwater flow: A simultaneous solution of a coupled system. Journal of Hydrology, 301(1–4), 216–234.CrossRef
11.
Zurück zum Zitat He, Z., wen, X., Liu, H., & Du, J. (2013). A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509, 379–386.CrossRef He, Z., wen, X., Liu, H., & Du, J. (2013). A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509, 379–386.CrossRef
12.
Zurück zum Zitat Hiremath, S. M., Patra, S. K., & Mishra, A. K. (2012). ANFIS with subtractive clustering-based extended data rate prediction for cognitive radio. In Proceeding of the 5th International Conference on Computers and Devices for Communication (CODEC). https://doi.org/10.1109/codec.2012.6509239. Hiremath, S. M., Patra, S. K., & Mishra, A. K. (2012). ANFIS with subtractive clustering-based extended data rate prediction for cognitive radio. In Proceeding of the 5th International Conference on Computers and Devices for Communication (CODEC). https://​doi.​org/​10.​1109/​codec.​2012.​6509239.
13.
Zurück zum Zitat Hu, Y. C. (2007). Sugeno fuzzy integral for finding fuzzy if–Then classification rules. Applied Mathematics and Computation, 185, 72–83.MathSciNetCrossRefMATH Hu, Y. C. (2007). Sugeno fuzzy integral for finding fuzzy if–Then classification rules. Applied Mathematics and Computation, 185, 72–83.MathSciNetCrossRefMATH
14.
Zurück zum Zitat Humphrey, G. B., Gibbs, M. S., Dandy, G. C., & Maier, H. R. (2016). A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology, 540, 623–640.CrossRef Humphrey, G. B., Gibbs, M. S., Dandy, G. C., & Maier, H. R. (2016). A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology, 540, 623–640.CrossRef
15.
Zurück zum Zitat Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neurofuzzy and soft computing: A computational approach to learning and machine intelligence. New Jersey: Prentice-Hall. Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neurofuzzy and soft computing: A computational approach to learning and machine intelligence. New Jersey: Prentice-Hall.
16.
Zurück zum Zitat Kagoda, P. A., Ndiritu, J., Ntuli, C., & Mwaka, B. (2010). Application of radial basis function neural networks to short-term streamflow forecasting. Physics and Chemistry of the Earth, 35(13–14), 571–581.CrossRef Kagoda, P. A., Ndiritu, J., Ntuli, C., & Mwaka, B. (2010). Application of radial basis function neural networks to short-term streamflow forecasting. Physics and Chemistry of the Earth, 35(13–14), 571–581.CrossRef
17.
Zurück zum Zitat Kisi, O. (2008). River flow forecasting and estimation using different artificial neural network techniques. Hydrology Research, 39(1), 27–40.CrossRef Kisi, O. (2008). River flow forecasting and estimation using different artificial neural network techniques. Hydrology Research, 39(1), 27–40.CrossRef
18.
Zurück zum Zitat Kisi, O., Hossein zadeh Dalir, A., Cimen, M., & Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58.CrossRef Kisi, O., Hossein zadeh Dalir, A., Cimen, M., & Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58.CrossRef
19.
Zurück zum Zitat Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117.CrossRef Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117.CrossRef
20.
Zurück zum Zitat Kisi, O., Karimi, S., Shiri, J., Makarynskyy, O., & Yoon, H. (2014). Forecasting sea water levels at Mukho Station, South Korea using soft computing techniques. The International Journal of Ocean and Climate Systems, 5(4), 175–188.CrossRef Kisi, O., Karimi, S., Shiri, J., Makarynskyy, O., & Yoon, H. (2014). Forecasting sea water levels at Mukho Station, South Korea using soft computing techniques. The International Journal of Ocean and Climate Systems, 5(4), 175–188.CrossRef
21.
Zurück zum Zitat Kisi, O., & Zounemat-Kermani, M. (2016). Suspended sediment modeling using neuro-fuzzy embedded fuzzy c-means clustering technique. Water Resources Management, 30(11), 3979–3994.CrossRef Kisi, O., & Zounemat-Kermani, M. (2016). Suspended sediment modeling using neuro-fuzzy embedded fuzzy c-means clustering technique. Water Resources Management, 30(11), 3979–3994.CrossRef
22.
Zurück zum Zitat Lin, C. T., Lin, C. J., & Lee, C. S. G. (1995). Fuzzy adaptive learning control network with on-line neural learning. Fuzzy Sets Systems, 71, 25–45.MathSciNetCrossRef Lin, C. T., Lin, C. J., & Lee, C. S. G. (1995). Fuzzy adaptive learning control network with on-line neural learning. Fuzzy Sets Systems, 71, 25–45.MathSciNetCrossRef
23.
Zurück zum Zitat Maier, H. R., & Dandy, G. C. (1996). Use of artificial neural networks for prediction of water quality parameters. Water Resources Research, 32(4), 1013–1022.CrossRef Maier, H. R., & Dandy, G. C. (1996). Use of artificial neural networks for prediction of water quality parameters. Water Resources Research, 32(4), 1013–1022.CrossRef
24.
Zurück zum Zitat Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.CrossRefMATH Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.CrossRefMATH
25.
Zurück zum Zitat Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291, 52–66.CrossRef Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291, 52–66.CrossRef
26.
Zurück zum Zitat Rath, S., Nayak, P. C., & Chatterjee, C. (2013). Hierarchical neuro-fuzzy model for real-time flood forecasting. International Journal of River Basin Management, 11(3), 253–268.CrossRef Rath, S., Nayak, P. C., & Chatterjee, C. (2013). Hierarchical neuro-fuzzy model for real-time flood forecasting. International Journal of River Basin Management, 11(3), 253–268.CrossRef
27.
Zurück zum Zitat Russel, S. O., & Campbell, P. F. (1996). Reservoir operating rules with fuzzy programming. Journal of Water Resources Planning and Management, 122(3), 165–170.CrossRef Russel, S. O., & Campbell, P. F. (1996). Reservoir operating rules with fuzzy programming. Journal of Water Resources Planning and Management, 122(3), 165–170.CrossRef
28.
Zurück zum Zitat Sarlak, N. (2008). Annual streamflow modelling with asymmetric distribution function. Hydrological Processes, 22, 3403–3409.CrossRef Sarlak, N. (2008). Annual streamflow modelling with asymmetric distribution function. Hydrological Processes, 22, 3403–3409.CrossRef
29.
Zurück zum Zitat Sharma, S., Srivastava, P., Fang, X., & Kalin, L. (2015). Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed. Expert Systems with Applications, 42(4), 2213–2223.CrossRef Sharma, S., Srivastava, P., Fang, X., & Kalin, L. (2015). Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed. Expert Systems with Applications, 42(4), 2213–2223.CrossRef
30.
Zurück zum Zitat Shiri, J., & Kisi, O. (2010). Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology, 394, 486–493.CrossRef Shiri, J., & Kisi, O. (2010). Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology, 394, 486–493.CrossRef
31.
Zurück zum Zitat Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132.CrossRefMATH Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), 116–132.CrossRefMATH
32.
Zurück zum Zitat Talei, A., Chua, L. H., Queck, C., & Jansson, P. E. (2013). Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning. Journal of Hydrology, 488, 17–32.CrossRef Talei, A., Chua, L. H., Queck, C., & Jansson, P. E. (2013). Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning. Journal of Hydrology, 488, 17–32.CrossRef
33.
Zurück zum Zitat Tennant, D. L. (1976). Instream flow regimes for fish, wildlife, recreation and related environmental resources. Fisheries, 1, 6–10.CrossRef Tennant, D. L. (1976). Instream flow regimes for fish, wildlife, recreation and related environmental resources. Fisheries, 1, 6–10.CrossRef
34.
Zurück zum Zitat Vernieuwe, H., Georgieva, O., De Baets, B., Pauwels, V. R. N., Verhoest, N. E. C., & De Troch, F. P. (2005). Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics. Journal of Hydrology, 302(1–4), 173–186.CrossRef Vernieuwe, H., Georgieva, O., De Baets, B., Pauwels, V. R. N., Verhoest, N. E. C., & De Troch, F. P. (2005). Comparison of data-driven Takagi-Sugeno models of rainfall-discharge dynamics. Journal of Hydrology, 302(1–4), 173–186.CrossRef
35.
Zurück zum Zitat Wang, W., Van Gelder, P., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324, 383–399.CrossRef Wang, W., Van Gelder, P., Vrijling, J. K., & Ma, J. (2006). Forecasting daily streamflow using hybrid ANN models. Journal of Hydrology, 324, 383–399.CrossRef
36.
Zurück zum Zitat Wang, W., Chau, K. W., Cheng, C. T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374, 294–306.CrossRef Wang, W., Chau, K. W., Cheng, C. T., & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374, 294–306.CrossRef
37.
Zurück zum Zitat Yarar, A. (2014). A hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow data. Water Resources Management, 28, 553–565.CrossRef Yarar, A. (2014). A hybrid wavelet and neuro-fuzzy model for forecasting the monthly streamflow data. Water Resources Management, 28, 553–565.CrossRef
38.
Zurück zum Zitat Yilmaz, A. G., & Muttil, N. (2014). Runoff estimation by machine learning methods and application to the Euphrates Basin in Turkey. Journal of Hydrologic Engineering, 19(5), 1015–1025.CrossRef Yilmaz, A. G., & Muttil, N. (2014). Runoff estimation by machine learning methods and application to the Euphrates Basin in Turkey. Journal of Hydrologic Engineering, 19(5), 1015–1025.CrossRef
39.
Zurück zum Zitat Zounemat Kermani, M., & Teshnelab, M. (2008). Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Applied Soft Computing, 8, 928–936.CrossRef Zounemat Kermani, M., & Teshnelab, M. (2008). Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Applied Soft Computing, 8, 928–936.CrossRef
Metadaten
Titel
Three Different Adaptive Neuro Fuzzy Computing Techniques for Forecasting Long-Period Daily Streamflows
verfasst von
Ozgur Kisi
Jalal Shiri
Sepideh Karimi
Rana Muhammad Adnan
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8476-8_15

Premium Partner