Skip to main content
Erschienen in: Experiments in Fluids 5/2012

01.11.2012 | Research Article

Three-dimensional features of a Mach 2.1 shock/boundary layer interaction

Erschienen in: Experiments in Fluids | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

2D particle image velocimetry was used to study the three-dimensionality of the shock-boundary layer interaction generated by a small 20° compression ramp in a low aspect ratio continuously operated wind tunnel. High-resolution data were taken in four streamwise-wallnormal planes: three planes located in the sidewall boundary layer and one near the tunnel centerline. The incoming boundary layer was found to show three-dimensionality, with significant overshoot in the velocity profiles observed near the sidewall. The size of the wedge influenced the interaction, which was weaker than that observed in the case of a large compression wedge. The flow turning angle was ≈8° near the tunnel centerline and changed significantly across the span. Measurements behind the compression wedge in the centerline plane showed that both velocity and turbulence properties were nearly fully recovered ≈14δ behind the compression corner. The shock angle varied with spanwise position, and a multi-shock structure was observed in the sidewall planes. The size of the interaction decreased in the sidewall boundary layer. Non-monotonic variations in both velocity and turbulence profiles across the sidewall planes suggest the presence of significant spanwise flows, possibly corner vortices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beresh S, Comninos M, Clemens N, Dolling D (1998) The effects of the incoming turbulent boundary layer structure on a shock-induced separated flow. AIAA Paper 98-0629 Beresh S, Comninos M, Clemens N, Dolling D (1998) The effects of the incoming turbulent boundary layer structure on a shock-induced separated flow. AIAA Paper 98-0629
Zurück zum Zitat Beresh S, Clemens N, Dolling D (2002) Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J 40:2412–2422CrossRef Beresh S, Clemens N, Dolling D (2002) Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J 40:2412–2422CrossRef
Zurück zum Zitat Bogdonoff S, Kepler C (1955) Separation of a supersonic turbulent boundary layer. J Aeronaut Sci 22:414–424 Bogdonoff S, Kepler C (1955) Separation of a supersonic turbulent boundary layer. J Aeronaut Sci 22:414–424
Zurück zum Zitat Bookey P, Wyckham C, Smits A, Martin M (2005) New experimental data of stbli at dns/les accessible reynolds numbers. AIAA Paper 2005-309 Bookey P, Wyckham C, Smits A, Martin M (2005) New experimental data of stbli at dns/les accessible reynolds numbers. AIAA Paper 2005-309
Zurück zum Zitat Christensen K (2004) The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp Fluids 36:484–497CrossRef Christensen K (2004) The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp Fluids 36:484–497CrossRef
Zurück zum Zitat Davis D, Gessner F (1989) Further experiments on supersonic turbulent flow development in a square duct. AIAA J 27:1023–1030CrossRef Davis D, Gessner F (1989) Further experiments on supersonic turbulent flow development in a square duct. AIAA J 27:1023–1030CrossRef
Zurück zum Zitat Dolling D (2001) Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J 39:1517–1531CrossRef Dolling D (2001) Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA J 39:1517–1531CrossRef
Zurück zum Zitat Dolling D, Murphy M (1983) Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J 21:1628–1634CrossRef Dolling D, Murphy M (1983) Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J 21:1628–1634CrossRef
Zurück zum Zitat Ganapathisubramani B, Clemens N, Dolling D (2007) Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J Fluid Mech 585:369–394MATHCrossRef Ganapathisubramani B, Clemens N, Dolling D (2007) Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J Fluid Mech 585:369–394MATHCrossRef
Zurück zum Zitat Han D (2001) Study of turbulent nonpremixed jet flames using simultaneous measurements of velocity and CH distribution. PhD Thesis, Stanford University Han D (2001) Study of turbulent nonpremixed jet flames using simultaneous measurements of velocity and CH distribution. PhD Thesis, Stanford University
Zurück zum Zitat Helmer D (2011) Measurements of a three-dimensional shock-boundary layer interaction. PhD Thesis, Stanford University Helmer D (2011) Measurements of a three-dimensional shock-boundary layer interaction. PhD Thesis, Stanford University
Zurück zum Zitat Helmer D, Campo L, Eaton J (2011) Sensitivity of a shock-boundary layer interaction to geometric perturbations. TSFP7 Conference Paper 7B1P Helmer D, Campo L, Eaton J (2011) Sensitivity of a shock-boundary layer interaction to geometric perturbations. TSFP7 Conference Paper 7B1P
Zurück zum Zitat Hou Y, Clemens N, Dolling D (2003) Wide-field PIV study of shock-induced turbulent boundary layer separation. AIAA Paper 2003-0441 Hou Y, Clemens N, Dolling D (2003) Wide-field PIV study of shock-induced turbulent boundary layer separation. AIAA Paper 2003-0441
Zurück zum Zitat Humble R, Scarano F, van Oudheusden B (2007) Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp Fluids 43:173–183CrossRef Humble R, Scarano F, van Oudheusden B (2007) Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp Fluids 43:173–183CrossRef
Zurück zum Zitat Humble R, Elsinga G, Scarano F, van Oudheusden B (2009) Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J Fluid Mech 622:33–62MATHCrossRef Humble R, Elsinga G, Scarano F, van Oudheusden B (2009) Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J Fluid Mech 622:33–62MATHCrossRef
Zurück zum Zitat Knight D, Degrez G (1998) Shock wave boundary layer interactions in high mach number flows. A critical survey of current numerical prediction capabilities. Advisory report 319. AGARD 2:1–35 Knight D, Degrez G (1998) Shock wave boundary layer interactions in high mach number flows. A critical survey of current numerical prediction capabilities. Advisory report 319. AGARD 2:1–35
Zurück zum Zitat Piponniau S, Dussauge J, Debieve J, Dupont P (2009) A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech 629:87–108MATHCrossRef Piponniau S, Dussauge J, Debieve J, Dupont P (2009) A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech 629:87–108MATHCrossRef
Zurück zum Zitat Pirozzoli S, Grasso F (2006) Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys Fluids 18:065113-1–065113-17CrossRef Pirozzoli S, Grasso F (2006) Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys Fluids 18:065113-1–065113-17CrossRef
Zurück zum Zitat Selig M, Andreopoulos J, Muck K, Dussauge J, Smits A (1989) Turbulence structure in a shock wave/turbulent boundary-layer interaction. AIAA J 27:862–869CrossRef Selig M, Andreopoulos J, Muck K, Dussauge J, Smits A (1989) Turbulence structure in a shock wave/turbulent boundary-layer interaction. AIAA J 27:862–869CrossRef
Zurück zum Zitat Settles G, Vas I, Bogdonoff S (1976) Details of a shock-separated turbulent boundary layer at a compression corner. AIAA J 14:1709–1715CrossRef Settles G, Vas I, Bogdonoff S (1976) Details of a shock-separated turbulent boundary layer at a compression corner. AIAA J 14:1709–1715CrossRef
Zurück zum Zitat Smits A, Muck K (1987) Experimental study of three shock wave/turbulent boundary layer interactions. J Fluid Mech 182:291–314CrossRef Smits A, Muck K (1987) Experimental study of three shock wave/turbulent boundary layer interactions. J Fluid Mech 182:291–314CrossRef
Zurück zum Zitat Souverein L (2010) On the scaling and unsteadiness of shock induced separation. Doctoral Thesis, L’Université de Provence Souverein L (2010) On the scaling and unsteadiness of shock induced separation. Doctoral Thesis, L’Université de Provence
Zurück zum Zitat Souverein L, Dupont P, Debieve J, Dussauge J, van Oudheusden B, Scarano F (2010) Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J 48:1480–1493CrossRef Souverein L, Dupont P, Debieve J, Dussauge J, van Oudheusden B, Scarano F (2010) Effect of interaction strength on unsteadiness in turbulent shock-wave-induced separations. AIAA J 48:1480–1493CrossRef
Zurück zum Zitat Touber E, Sandham N (2009) Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19:469–478CrossRef Touber E, Sandham N (2009) Comparison of three large-eddy simulations of shock-induced turbulent separation bubbles. Shock Waves 19:469–478CrossRef
Zurück zum Zitat Van Driest E (1951) Turbulent boundary layer in compressible fluids. J Aeronaut Sci 18:145–160MathSciNetMATH Van Driest E (1951) Turbulent boundary layer in compressible fluids. J Aeronaut Sci 18:145–160MathSciNetMATH
Zurück zum Zitat Wu M, Martin M (2008) Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J Fluid Mech 594:71–83MATHCrossRef Wu M, Martin M (2008) Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J Fluid Mech 594:71–83MATHCrossRef
Metadaten
Titel
Three-dimensional features of a Mach 2.1 shock/boundary layer interaction
Publikationsdatum
01.11.2012
Erschienen in
Experiments in Fluids / Ausgabe 5/2012
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-012-1363-8

Weitere Artikel der Ausgabe 5/2012

Experiments in Fluids 5/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.