Skip to main content
Erschienen in: Experiments in Fluids 9/2016

01.09.2016 | Research Article

Three-dimensional inspiratory flow in a double bifurcation airway model

verfasst von: Sahar Jalal, Andras Nemes, Tristan Van de Moortele, Sebastian Schmitter, Filippo Coletti

Erschienen in: Experiments in Fluids | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow in an idealized airway model is investigated for the steady inhalation case. The geometry consists of a symmetric planar double bifurcation that reflects the anatomical proportions of the human bronchial tree, and a wide range of physiologically relevant Reynolds numbers (Re = 100–5000) is considered. Using magnetic resonance velocimetry, we analyze the three-dimensional fields of velocity and vorticity, along with flow descriptors that characterize the longitudinal and lateral dispersion. In agreement with previous studies, the symmetry of the flow partitioning is broken even at the lower Reynolds numbers, and at the second bifurcation, the fluid favors the medial branches over the lateral ones. This trend reaches a plateau around Re = 2000, above which the turbulent inflow results in smoothed mean velocity gradients. This also reduces the streamwise momentum flux, which is a measure of the longitudinal dispersion by the mean flow. The classic Dean-type counter-rotating vortices are observed in the first-generation daughter branches as a result of the local curvature. In the granddaughter branches, however, the secondary flows are determined by the local curvature only for the lower flow regimes (Re ≤ 250), in which case the classic Dean mechanism prevails. At higher flow regimes, the field is instead dominated by streamwise vortices extending from the daughter into the medial granddaughter branches, where they rotate in the opposite direction with respect to Dean vortices. Circulation and secondary flow intensity show a similar trend as the momentum flux, increasing with Reynolds number up to Re = 2000 and then dropping due to turbulent dissipation of vorticity. The streamwise vortices interact both with each other and with the airway walls, and for Re > 500 they can become stronger in the medial granddaughter than in the upstream daughter branches. With respect to realistic airway models, the idealized geometry produces weaker secondary flows, suggesting that realistic anatomical features may generate more lateral dispersion than canonical symmetric models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andrade JS Jr, Alencar AM, Almeida MP, Mendes Filho J, Buldyrev SV, Zapperi S, Suki B (1998) Asymmetric flow in symmetric branched structures. Phys Rev Lett 81(4):926CrossRef Andrade JS Jr, Alencar AM, Almeida MP, Mendes Filho J, Buldyrev SV, Zapperi S, Suki B (1998) Asymmetric flow in symmetric branched structures. Phys Rev Lett 81(4):926CrossRef
Zurück zum Zitat Banko AJ, Coletti F, Schiavazzi D, Elkins CJ, Eaton JK (2015) Three-dimensional inspiratory flow in the upper and central human airways. Exp Fluids 56(6):1–12CrossRef Banko AJ, Coletti F, Schiavazzi D, Elkins CJ, Eaton JK (2015) Three-dimensional inspiratory flow in the upper and central human airways. Exp Fluids 56(6):1–12CrossRef
Zurück zum Zitat Benson MJ, Elkins CJ, Eaton JK (2011) Measurements of 3D velocity and scalar field for a film-cooled airfoil trailing edge. Exp Fluids 51(2):443–455CrossRef Benson MJ, Elkins CJ, Eaton JK (2011) Measurements of 3D velocity and scalar field for a film-cooled airfoil trailing edge. Exp Fluids 51(2):443–455CrossRef
Zurück zum Zitat Bulusu KV, Hussain S, Plesniak MW (2014) Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow. Exp Fluids 55(11):1–20CrossRef Bulusu KV, Hussain S, Plesniak MW (2014) Determination of secondary flow morphologies by wavelet analysis in a curved artery model with physiological inflow. Exp Fluids 55(11):1–20CrossRef
Zurück zum Zitat Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL (1996) Non-planar curvature and branching of arteries and non-planar-type flow. In: proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 452(1944), The Royal Society, pp 185–197 Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL (1996) Non-planar curvature and branching of arteries and non-planar-type flow. In: proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol 452(1944), The Royal Society, pp 185–197
Zurück zum Zitat Coletti F, Elkins CJ, Eaton JK (2013) An inclined jet in crossflow under the effect of streamwise pressure gradients. Exp Fluids 54(9):1–16CrossRef Coletti F, Elkins CJ, Eaton JK (2013) An inclined jet in crossflow under the effect of streamwise pressure gradients. Exp Fluids 54(9):1–16CrossRef
Zurück zum Zitat Comer JK, Kleinstreuer C, Zhang Z (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J Fluid Mech 435:25–54MATH Comer JK, Kleinstreuer C, Zhang Z (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J Fluid Mech 435:25–54MATH
Zurück zum Zitat Dean WR (1927) Note on the motion of fluid in a curved pipe. Lond Edinb Dublin Philos Mag J Sci 4(20):208–223CrossRefMATH Dean WR (1927) Note on the motion of fluid in a curved pipe. Lond Edinb Dublin Philos Mag J Sci 4(20):208–223CrossRefMATH
Zurück zum Zitat Doorly D, Sherwin S (2010) Geometry and flow. In: Formaggia L, Quarteroni A, Veneziani A (eds) Cardiovascular Mathematics: modeling and simulation of the circulatory system. Springer-Verlag, Milan, pp 177–209 Doorly D, Sherwin S (2010) Geometry and flow. In: Formaggia L, Quarteroni A, Veneziani A (eds) Cardiovascular Mathematics: modeling and simulation of the circulatory system. Springer-Verlag, Milan, pp 177–209
Zurück zum Zitat Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43(6):823–858CrossRef Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43(6):823–858CrossRef
Zurück zum Zitat Fredberg JJ (1980) Augmented diffusion in the airways can support pulmonary gas exchange. J Appl Physiol 49(2):232–238 Fredberg JJ (1980) Augmented diffusion in the airways can support pulmonary gas exchange. J Appl Physiol 49(2):232–238
Zurück zum Zitat Fresconi FE, Prasad AK (2007) Secondary velocity fields in the conducting airways of the human lung. J Biomech Eng 129(5):722–732CrossRef Fresconi FE, Prasad AK (2007) Secondary velocity fields in the conducting airways of the human lung. J Biomech Eng 129(5):722–732CrossRef
Zurück zum Zitat Glycerine Producers’ Association (1963) Physical properties of glycerine and its solutions. Glycerine Producers’ Association Glycerine Producers’ Association (1963) Physical properties of glycerine and its solutions. Glycerine Producers’ Association
Zurück zum Zitat Golshahi L, Finlay WH (2009) Recent advances in understanding gas and aerosol transport in the lungs: application to predictions of regional deposition. In: Wang LQ (ed) Advances in Transport Phenomena. Springer Berlin, Heidelberg, pp 1–30 Golshahi L, Finlay WH (2009) Recent advances in understanding gas and aerosol transport in the lungs: application to predictions of regional deposition. In: Wang LQ (ed) Advances in Transport Phenomena. Springer Berlin, Heidelberg, pp 1–30
Zurück zum Zitat Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12(9):1422CrossRef Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12(9):1422CrossRef
Zurück zum Zitat Grotberg JB (2001) Respiratory fluid mechanics and transport processes. Annu Rev Biomed Eng 3(1):421–457CrossRef Grotberg JB (2001) Respiratory fluid mechanics and transport processes. Annu Rev Biomed Eng 3(1):421–457CrossRef
Zurück zum Zitat Haacke M, Brown R, Thompson M, Venkatesan R (1999) Magnetic Resonance Imaging. Wiley-Liss, New York Haacke M, Brown R, Thompson M, Venkatesan R (1999) Magnetic Resonance Imaging. Wiley-Liss, New York
Zurück zum Zitat Isabey D, Chang HK (1982) A model study of flow dynamics in human central airways. Part II: secondary flow velocities. Respir Physiol 49(1):97–113CrossRef Isabey D, Chang HK (1982) A model study of flow dynamics in human central airways. Part II: secondary flow velocities. Respir Physiol 49(1):97–113CrossRef
Zurück zum Zitat Kleinstreuer C, Feng Y (2013) Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics—a review. J Biomech Eng 135(2):021008CrossRef Kleinstreuer C, Feng Y (2013) Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics—a review. J Biomech Eng 135(2):021008CrossRef
Zurück zum Zitat Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Annu Rev Fluid Mech 42:301–334CrossRefMATH Kleinstreuer C, Zhang Z (2010) Airflow and particle transport in the human respiratory system. Annu Rev Fluid Mech 42:301–334CrossRefMATH
Zurück zum Zitat Leong FY, Smith KA, Wang CH (2009) Secondary flow behavior in a double bifurcation. Phys Fluids (1994-present) 21(4):043601CrossRefMATH Leong FY, Smith KA, Wang CH (2009) Secondary flow behavior in a double bifurcation. Phys Fluids (1994-present) 21(4):043601CrossRefMATH
Zurück zum Zitat Liu Y, So RMC, Zhang CH (2002) Modeling the bifurcating flow in a human lung airway. J Biomech 35(4):465–473CrossRef Liu Y, So RMC, Zhang CH (2002) Modeling the bifurcating flow in a human lung airway. J Biomech 35(4):465–473CrossRef
Zurück zum Zitat Longest PW, Vinchurkar S (2007) Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech 40(2):305–316CrossRef Longest PW, Vinchurkar S (2007) Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech 40(2):305–316CrossRef
Zurück zum Zitat Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36(5):1015–1036CrossRef Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36(5):1015–1036CrossRef
Zurück zum Zitat Mauroy B, Filoche M, Andrade JS Jr, Sapoval B (2003) Interplay between geometry and flow distribution in an airway tree. Phys Rev Lett 90(14):148101CrossRef Mauroy B, Filoche M, Andrade JS Jr, Sapoval B (2003) Interplay between geometry and flow distribution in an airway tree. Phys Rev Lett 90(14):148101CrossRef
Zurück zum Zitat Mauroy B, Filoche M, Weibel ER, Sapoval B (2004) An optimal bronchial tree may be dangerous. Nature 427(6975):633–636CrossRef Mauroy B, Filoche M, Weibel ER, Sapoval B (2004) An optimal bronchial tree may be dangerous. Nature 427(6975):633–636CrossRef
Zurück zum Zitat Murray CD (1926) The physiological principle of minimum work I. The vascular system and the cost of blood volume. Proc Natl Acad Sci 12(3):207–214CrossRef Murray CD (1926) The physiological principle of minimum work I. The vascular system and the cost of blood volume. Proc Natl Acad Sci 12(3):207–214CrossRef
Zurück zum Zitat Padilla A (2012) The effect of upstream perturbations on 3D annular diffusers. PhD thesis, Stanford University Padilla A (2012) The effect of upstream perturbations on 3D annular diffusers. PhD thesis, Stanford University
Zurück zum Zitat Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9(3):387–405CrossRef Pedley TJ, Schroter RC, Sudlow MF (1970) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9(3):387–405CrossRef
Zurück zum Zitat Pedley TJ, Schroter RC, Sudlow MF (1971) Flow and pressure drop in systems of repeatedly branching tubes. J Fluid Mech 46(02):365–383CrossRef Pedley TJ, Schroter RC, Sudlow MF (1971) Flow and pressure drop in systems of repeatedly branching tubes. J Fluid Mech 46(02):365–383CrossRef
Zurück zum Zitat Pelc NJ, Sommer FG, Li KC, Brosnan TJ, Herfkens RJ, Enzmann DR (1994) Quantitative magnetic resonance flow imaging. Magn Reson Q 10(3):125–147 Pelc NJ, Sommer FG, Li KC, Brosnan TJ, Herfkens RJ, Enzmann DR (1994) Quantitative magnetic resonance flow imaging. Magn Reson Q 10(3):125–147
Zurück zum Zitat Sapoval B, Filoche M (2013) Magic trees in mammalians respiration or when evolution selected clever physical systems. Fractals 21(03n04):1350024MathSciNetCrossRefMATH Sapoval B, Filoche M (2013) Magic trees in mammalians respiration or when evolution selected clever physical systems. Fractals 21(03n04):1350024MathSciNetCrossRefMATH
Zurück zum Zitat Schroter RC, Sudlow MF (1969) Flow patterns in models of the human bronchial airways. Respir Physiol 7(3):341–355CrossRef Schroter RC, Sudlow MF (1969) Flow patterns in models of the human bronchial airways. Respir Physiol 7(3):341–355CrossRef
Zurück zum Zitat Theunissen R, Riethmuller ML (2007) Particle image velocimetry in lung bifurcation models. In: Particle Image Velocimetry. Springer, Berlin, Heidelberg, pp 73–101 Theunissen R, Riethmuller ML (2007) Particle image velocimetry in lung bifurcation models. In: Particle Image Velocimetry. Springer, Berlin, Heidelberg, pp 73–101
Zurück zum Zitat Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA Weibel ER (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge, MA
Zurück zum Zitat Weibel ER (1963) Principles and methods for the morphometric study of the lung and other organs. Lab Investig J Tech Methods Pathol 12:131 Weibel ER (1963) Principles and methods for the morphometric study of the lung and other organs. Lab Investig J Tech Methods Pathol 12:131
Zurück zum Zitat Weibel ER (1997) Design of airways and blood vessels considered as branching tree, Chapter 74. In: Crystal RG, West JB, Barnes PJ (eds) The Lung. Lippencott-Raven Inc., Philadelphia Weibel ER (1997) Design of airways and blood vessels considered as branching tree, Chapter 74. In: Crystal RG, West JB, Barnes PJ (eds) The Lung. Lippencott-Raven Inc., Philadelphia
Zurück zum Zitat Zhang Z, Kleinstreuer C (2002) Transient airflow structures and particle transport in a sequentially branching lung airway model. Phys Fluids (1994-present) 14(2):862–880CrossRefMATH Zhang Z, Kleinstreuer C (2002) Transient airflow structures and particle transport in a sequentially branching lung airway model. Phys Fluids (1994-present) 14(2):862–880CrossRefMATH
Zurück zum Zitat Zhao Y, Lieber BB (1994) Steady inspiratory flow in a model symmetric bifurcation. J Biomech Eng 116(4):488–496CrossRef Zhao Y, Lieber BB (1994) Steady inspiratory flow in a model symmetric bifurcation. J Biomech Eng 116(4):488–496CrossRef
Metadaten
Titel
Three-dimensional inspiratory flow in a double bifurcation airway model
verfasst von
Sahar Jalal
Andras Nemes
Tristan Van de Moortele
Sebastian Schmitter
Filippo Coletti
Publikationsdatum
01.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 9/2016
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-016-2234-5

Weitere Artikel der Ausgabe 9/2016

Experiments in Fluids 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.