Skip to main content
Erschienen in: Journal of Scientific Computing 3/2014

01.09.2014

Three-Dimensional Lattice Boltzmann Model for the Complex Ginzburg–Landau Equation

verfasst von: Jianying Zhang, Guangwu Yan

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a lattice Boltzmann model for the three-dimensional complex Ginzburg–Landau equation is proposed. The multi-scale technique and the Chapman–Enskog expansion are used to describe higher-order moments of the complex equilibrium distribution function and a series of complex partial differential equations. The modified partial differential equation of the three-dimensional complex Ginzburg–Landau equation with the third order truncation error is obtained. Based on the complex lattice Boltzmann model, some motions of the stable scroll, such as the scroll wave with a straight filament, scroll ring, and helical scroll are simulated. The comparisons between results of the lattice Boltzmann model with those obtained by the alternative direction implicit scheme are given. The numerical results show that this model can be used to simulate the three-dimensional complex Ginzburg–Landau equation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989) Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)
2.
Zurück zum Zitat Higuera, F.J., Jimènez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989) Higuera, F.J., Jimènez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)
3.
Zurück zum Zitat Qian, Y.H., d’humieres, D., Lallemand, P.: Lattice BGK model for Navier–Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)MATH Qian, Y.H., d’humieres, D., Lallemand, P.: Lattice BGK model for Navier–Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)MATH
4.
Zurück zum Zitat Chen, H.D., Chen, S.Y., Matthaeus, M.H.: Recovery of the Navier–Stokes equations using a lattice Boltzmann gas method. Phys. Rev. A 45, 5339–5342 (1992) Chen, H.D., Chen, S.Y., Matthaeus, M.H.: Recovery of the Navier–Stokes equations using a lattice Boltzmann gas method. Phys. Rev. A 45, 5339–5342 (1992)
5.
Zurück zum Zitat Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equations: theory and applications. Phys. Rep. 222, 145–197 (1992) Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equations: theory and applications. Phys. Rep. 222, 145–197 (1992)
6.
Zurück zum Zitat Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Fluid Mech. 3, 314–322 (1998) Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Fluid Mech. 3, 314–322 (1998)
7.
Zurück zum Zitat Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)MATH Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)MATH
8.
Zurück zum Zitat Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier–Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986) Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier–Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986)
9.
10.
Zurück zum Zitat Shan, X.W., Chen, H.D.: Lattice Boltzmann model of simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993) Shan, X.W., Chen, H.D.: Lattice Boltzmann model of simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)
11.
Zurück zum Zitat Luo, L.S.: Theory of the lattice Boltzmann method: lattice Boltzmann method for nonideal gases. Phys. Rev. E 62, 4982–4996 (2000)MathSciNet Luo, L.S.: Theory of the lattice Boltzmann method: lattice Boltzmann method for nonideal gases. Phys. Rev. E 62, 4982–4996 (2000)MathSciNet
12.
Zurück zum Zitat Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows. J. Comput. Phys. 224, 539–559 (2007)MATHMathSciNet Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows. J. Comput. Phys. 224, 539–559 (2007)MATHMathSciNet
13.
Zurück zum Zitat Ladd, A.: Numerical simulations of particle suspensions via a discretized Boltzmann equation, part 2. Numerical results. J. Fluids Mech. 271, 311–339 (1994)MathSciNet Ladd, A.: Numerical simulations of particle suspensions via a discretized Boltzmann equation, part 2. Numerical results. J. Fluids Mech. 271, 311–339 (1994)MathSciNet
14.
Zurück zum Zitat Filippova, O., Hanel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)MATH Filippova, O., Hanel, D.: Lattice Boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)MATH
15.
Zurück zum Zitat Chen, S.Y., Chen, H.D., Martinez, D., et al.: Lattice Boltzmann Model for simulation of magneto-hydrodynamics. Phys. Rev. Lett. 67, 3776–3779 (1991) Chen, S.Y., Chen, H.D., Martinez, D., et al.: Lattice Boltzmann Model for simulation of magneto-hydrodynamics. Phys. Rev. Lett. 67, 3776–3779 (1991)
16.
Zurück zum Zitat Vahala, L., Vahala, G., Yepez, J.: Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence. Phys. Lett. A 306, 227–234 (2003)MATHMathSciNet Vahala, L., Vahala, G., Yepez, J.: Lattice Boltzmann and quantum lattice gas representations of one-dimensional magnetohydrodynamic turbulence. Phys. Lett. A 306, 227–234 (2003)MATHMathSciNet
17.
Zurück zum Zitat Vahala, G., Keating, B., Soe, M., et al.: MHD turbulence studies using lattice Boltzmann algorithms. Commun. Comput. Phys. 4, 624–646 (2008) Vahala, G., Keating, B., Soe, M., et al.: MHD turbulence studies using lattice Boltzmann algorithms. Commun. Comput. Phys. 4, 624–646 (2008)
18.
Zurück zum Zitat Dawson, S.P., Chen, S.Y., Doolen, G.D.: Lattice Boltzmann computations for reaction–diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993) Dawson, S.P., Chen, S.Y., Doolen, G.D.: Lattice Boltzmann computations for reaction–diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)
19.
Zurück zum Zitat Yepez, J.: Quantum lattice-gas model for the diffusion equation. Int. J. Mod. Phys. C 12, 1285–1303 (2001)MathSciNet Yepez, J.: Quantum lattice-gas model for the diffusion equation. Int. J. Mod. Phys. C 12, 1285–1303 (2001)MathSciNet
20.
Zurück zum Zitat Berman, G.P., Ezhov, A.A., Kamenev, D.I., et al.: Simulation of the diffusion equation on a type-II quantum computer. Phys. Rev. A 66, 012310 (2002) Berman, G.P., Ezhov, A.A., Kamenev, D.I., et al.: Simulation of the diffusion equation on a type-II quantum computer. Phys. Rev. A 66, 012310 (2002)
21.
Zurück zum Zitat Cali, A., Succi, S., Cancelliere, A., et al.: Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. Phys. Rev. A 45, 5771–5774 (1992) Cali, A., Succi, S., Cancelliere, A., et al.: Diffusion and hydrodynamic dispersion with the lattice Boltzmann method. Phys. Rev. A 45, 5771–5774 (1992)
22.
Zurück zum Zitat Blaak, R., Sloot, P.M.: Lattice dependence of reaction–diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)MATHMathSciNet Blaak, R., Sloot, P.M.: Lattice dependence of reaction–diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)MATHMathSciNet
23.
Zurück zum Zitat Succi, S., Foti, E., Higuera, F.J.: 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989) Succi, S., Foti, E., Higuera, F.J.: 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989)
24.
Zurück zum Zitat Sun, C.H.: Lattice-Boltzmann model for high speed flows. Phys. Rev. E 58, 7283–7287 (1998) Sun, C.H.: Lattice-Boltzmann model for high speed flows. Phys. Rev. E 58, 7283–7287 (1998)
25.
Zurück zum Zitat Yan, G.W., Chen, Y.S., Hu, S.X.: Simple lattice Boltzmann model for simulating flows with shock wave. Phys. Rev. E 59, 454–459 (1999) Yan, G.W., Chen, Y.S., Hu, S.X.: Simple lattice Boltzmann model for simulating flows with shock wave. Phys. Rev. E 59, 454–459 (1999)
26.
Zurück zum Zitat Qu, K., Shu, Q., Chew, Y.T.: Alternative method to construct equilibrium distribution function in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 75, 036706 (2007)MathSciNet Qu, K., Shu, Q., Chew, Y.T.: Alternative method to construct equilibrium distribution function in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 75, 036706 (2007)MathSciNet
27.
Zurück zum Zitat Gan, Y.B., Xu, A.G., Zhang, G.C., et al.: Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Phys. A 387, 1721–1732 (2008) Gan, Y.B., Xu, A.G., Zhang, G.C., et al.: Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Phys. A 387, 1721–1732 (2008)
28.
Zurück zum Zitat Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010) Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010)
29.
Zurück zum Zitat Nash, R.W., Adhikari, R., Tailleur, J., Cates, M.E.: Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming. Phys. Rev. Lett. 104, 258101 (2010) Nash, R.W., Adhikari, R., Tailleur, J., Cates, M.E.: Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming. Phys. Rev. Lett. 104, 258101 (2010)
30.
Zurück zum Zitat Benzi, R., Chibbaro, S., Succi, S.: Mesoscopic lattice Boltzmann modeling of flowing soft systems. Phys. Rev. Lett. 102, 026002 (2009) Benzi, R., Chibbaro, S., Succi, S.: Mesoscopic lattice Boltzmann modeling of flowing soft systems. Phys. Rev. Lett. 102, 026002 (2009)
31.
Zurück zum Zitat Li, H., Ki, H.: Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas. Phys. Rev. E 82, 016703 (2010) Li, H., Ki, H.: Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas. Phys. Rev. E 82, 016703 (2010)
32.
Zurück zum Zitat Suga, K., Takenaka, S., Ito, T., et al.: Evaluation of a lattice Boltzmann method in a complex nanoflow. Phys. Rev. E 82, 016701 (2010) Suga, K., Takenaka, S., Ito, T., et al.: Evaluation of a lattice Boltzmann method in a complex nanoflow. Phys. Rev. E 82, 016701 (2010)
33.
Zurück zum Zitat Kekre, R., Butler, J.E., Ladd, A.: Comparison of lattice-Boltzmann and Brownian-dynamics simulations of polymer migration in confined flows. Phys. Rev. E 82, 011802 (2010) Kekre, R., Butler, J.E., Ladd, A.: Comparison of lattice-Boltzmann and Brownian-dynamics simulations of polymer migration in confined flows. Phys. Rev. E 82, 011802 (2010)
34.
Zurück zum Zitat Chopard, B., Luthi, P.O.: Lattice Boltzmann computations and applications to physics. Theor. Comput. Sci. 217, 115–130 (1999)MATHMathSciNet Chopard, B., Luthi, P.O.: Lattice Boltzmann computations and applications to physics. Theor. Comput. Sci. 217, 115–130 (1999)MATHMathSciNet
35.
36.
Zurück zum Zitat Zhang, J.Y., Yan, G.W., Shi, X.B.: Lattice Boltzmann model for wave propagation. Phys. Rev. E 80, 026706 (2009) Zhang, J.Y., Yan, G.W., Shi, X.B.: Lattice Boltzmann model for wave propagation. Phys. Rev. E 80, 026706 (2009)
37.
Zurück zum Zitat Kwon, Y.W., Hosoglu, S.: Application of lattice Boltzmann method, finite element method, and cellular automata and their coupling to wave propagation problems. Comput. Struct. 86, 663–670 (2008) Kwon, Y.W., Hosoglu, S.: Application of lattice Boltzmann method, finite element method, and cellular automata and their coupling to wave propagation problems. Comput. Struct. 86, 663–670 (2008)
38.
Zurück zum Zitat Yepez, J.: Quantum lattice-gas model for the Burgers equation. J. Stat. Phys. 107, 203–224 (2002)MATH Yepez, J.: Quantum lattice-gas model for the Burgers equation. J. Stat. Phys. 107, 203–224 (2002)MATH
39.
Zurück zum Zitat Yepez, J.: Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity. Phys. Rev. A 74, 042322 (2006) Yepez, J.: Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity. Phys. Rev. A 74, 042322 (2006)
40.
Zurück zum Zitat Velivelli, A.C., Bryden, K.M.: Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger’s equation. Phys. A 362, 139–145 (2006) Velivelli, A.C., Bryden, K.M.: Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger’s equation. Phys. A 362, 139–145 (2006)
41.
Zurück zum Zitat Vahala, G., Yepez, J., Vahala, L.: Quantum lattice gas representation of some classical solitons. Phys. Lett. A 310, 187–196 (2003)MATHMathSciNet Vahala, G., Yepez, J., Vahala, L.: Quantum lattice gas representation of some classical solitons. Phys. Lett. A 310, 187–196 (2003)MATHMathSciNet
42.
Zurück zum Zitat Yan, G.W., Zhang, J.Y.: A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation. Math. Comput. Simul. 79, 1554–1565 (2009)MATH Yan, G.W., Zhang, J.Y.: A higher-order moment method of the lattice Boltzmann model for the Korteweg–de Vries equation. Math. Comput. Simul. 79, 1554–1565 (2009)MATH
43.
Zurück zum Zitat Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the Korteweg–de Vries equation with two conservation laws. Comput. Phys. Commun. 180, 1054–1062 (2009)MATH Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the Korteweg–de Vries equation with two conservation laws. Comput. Phys. Commun. 180, 1054–1062 (2009)MATH
44.
Zurück zum Zitat Yan, G.W., Yuan, L.: Lattice Bhatnagar–Gross–Krook model for the Lorenz attractor. Phys. D 154, 43–50 (2001)MATHMathSciNet Yan, G.W., Yuan, L.: Lattice Bhatnagar–Gross–Krook model for the Lorenz attractor. Phys. D 154, 43–50 (2001)MATHMathSciNet
45.
Zurück zum Zitat Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Berlin (2000) Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Berlin (2000)
46.
Zurück zum Zitat Ginzburg, I.: Variably saturated flow described with the anisotropic lattice Boltzmann methods. J. Comput. Fluids 25, 831–848 (2006) Ginzburg, I.: Variably saturated flow described with the anisotropic lattice Boltzmann methods. J. Comput. Fluids 25, 831–848 (2006)
47.
Zurück zum Zitat Melchionna, S., Succi, S.: Lattice Boltzmann–Poisson method for electrorheological nanoflows in ion channels. Comput. Phys. Commun. 169, 203–206 (2005)MATH Melchionna, S., Succi, S.: Lattice Boltzmann–Poisson method for electrorheological nanoflows in ion channels. Comput. Phys. Commun. 169, 203–206 (2005)MATH
48.
Zurück zum Zitat Capuani, F., Pagonabarraga, I., Frenkel, D.: Discrete solution of the electrokinetic equations. J. Chem. Phys. 121, 973–986 (2004) Capuani, F., Pagonabarraga, I., Frenkel, D.: Discrete solution of the electrokinetic equations. J. Chem. Phys. 121, 973–986 (2004)
49.
Zurück zum Zitat Hirabayashi, M., Chen, Y., Ohashi, H.: The lattice BGK model for the Poisson equation. JSME Int. J. Ser. B 44, 45–52 (2001) Hirabayashi, M., Chen, Y., Ohashi, H.: The lattice BGK model for the Poisson equation. JSME Int. J. Ser. B 44, 45–52 (2001)
50.
Zurück zum Zitat Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)MATHMathSciNet Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)MATHMathSciNet
51.
Zurück zum Zitat Wang, M.R., Wang, J.K., Chen, S.Y.: Roughness and cavitations effect on electro-osmotic flows in rough microchannels using the lattice Poisson–Boltzmann methods. J. Comput. Phys. 226, 836–851 (2007)MATH Wang, M.R., Wang, J.K., Chen, S.Y.: Roughness and cavitations effect on electro-osmotic flows in rough microchannels using the lattice Poisson–Boltzmann methods. J. Comput. Phys. 226, 836–851 (2007)MATH
52.
Zurück zum Zitat Wang, H.M., Yan, G.W., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the Laplace equation and the Poisson equation. J. Sci. Comput. 46, 470–484 (2010) Wang, H.M., Yan, G.W., Yan, B.: Lattice Boltzmann model based on the rebuilding-divergency method for the Laplace equation and the Poisson equation. J. Sci. Comput. 46, 470–484 (2010)
53.
Zurück zum Zitat Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Phys. D 69, 327–332 (1993)MATHMathSciNet Succi, S., Benzi, R.: Lattice Boltzmann equation for quantum mechanics. Phys. D 69, 327–332 (1993)MATHMathSciNet
54.
Zurück zum Zitat Succi, S.: Lattice quantum mechanics: an application to Bose–Einstein condensation. Int. J. Mod. Phys. C 9, 1577–1585 (1998) Succi, S.: Lattice quantum mechanics: an application to Bose–Einstein condensation. Int. J. Mod. Phys. C 9, 1577–1585 (1998)
55.
Zurück zum Zitat Zhong, L.H., Feng, S.D., Dong, P., Gao, S.T.: Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Phys. Rev. E 74, 036704 (2006) Zhong, L.H., Feng, S.D., Dong, P., Gao, S.T.: Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Phys. Rev. E 74, 036704 (2006)
56.
Zurück zum Zitat Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the nonlinear Schrödinger equation. J. Phys. A 40, 10393–10405 (2007)MATHMathSciNet Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the nonlinear Schrödinger equation. J. Phys. A 40, 10393–10405 (2007)MATHMathSciNet
57.
Zurück zum Zitat Shi, B.C.: Lattice Boltzmann simulation of some nonlinear complex equations. Lect. Notes Comput. Sci. 4487, 818–825 (2007) Shi, B.C.: Lattice Boltzmann simulation of some nonlinear complex equations. Lect. Notes Comput. Sci. 4487, 818–825 (2007)
58.
Zurück zum Zitat Yepez, J., Vahala, G., Vahala, L.: Vortex–antivortex pair in a Bose–Einstein condensate. Eur. Phys. J. Spec. Top. 171, 9–14 (2009) Yepez, J., Vahala, G., Vahala, L.: Vortex–antivortex pair in a Bose–Einstein condensate. Eur. Phys. J. Spec. Top. 171, 9–14 (2009)
59.
Zurück zum Zitat Yepez, J., Vahala, G., Vahala, L.: Twisting of filamentary vortex solitons demarcated by fast Poincaré recursion. Proc. SPIE 7342, 73420M (2009) Yepez, J., Vahala, G., Vahala, L.: Twisting of filamentary vortex solitons demarcated by fast Poincaré recursion. Proc. SPIE 7342, 73420M (2009)
60.
Zurück zum Zitat Yepez, J., Vahala, G., Vahala, L.: Lattice quantum algorithm for the Schrödinger wave equation in 2 + 1 dimensions with a demonstration by modeling soliton instabilities. Quantum Inf. Process. 4, 457–469 (2005) Yepez, J., Vahala, G., Vahala, L.: Lattice quantum algorithm for the Schrödinger wave equation in 2 + 1 dimensions with a demonstration by modeling soliton instabilities. Quantum Inf. Process. 4, 457–469 (2005)
61.
Zurück zum Zitat Vahala, G., Vahala, L., Yepez, J.: Inelastic vector soliton collisions: a lattice-based quantum representation. Philos. Trans. R. Soc. A 362, 1677–1690 (2004)MATHMathSciNet Vahala, G., Vahala, L., Yepez, J.: Inelastic vector soliton collisions: a lattice-based quantum representation. Philos. Trans. R. Soc. A 362, 1677–1690 (2004)MATHMathSciNet
62.
Zurück zum Zitat Vahala, G., Vahala, L., Yepez, J.: Quantum lattice representations for vector solitons in external potentials. Phys. A 362, 215–221 (2006) Vahala, G., Vahala, L., Yepez, J.: Quantum lattice representations for vector solitons in external potentials. Phys. A 362, 215–221 (2006)
63.
Zurück zum Zitat Succi, S.: Numerical solution of the Schrödinger equation using discrete kinetic theory. Phys. Rev. E 53, 1969–1975 (1996) Succi, S.: Numerical solution of the Schrödinger equation using discrete kinetic theory. Phys. Rev. E 53, 1969–1975 (1996)
64.
Zurück zum Zitat Yepez, J., Boghosian, B.: An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation. Comput. Phys. Commun. 146, 280–294 (2002)MATHMathSciNet Yepez, J., Boghosian, B.: An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation. Comput. Phys. Commun. 146, 280–294 (2002)MATHMathSciNet
65.
Zurück zum Zitat Palpacelli, S., Succi, S., Spigler, R.: Ground-state computation of Bose–Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E 76, 036712 (2007) Palpacelli, S., Succi, S., Spigler, R.: Ground-state computation of Bose–Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E 76, 036712 (2007)
66.
Zurück zum Zitat Palpacelli, S., Succi, S.: Quantum lattice Boltzmann simulation of expanding Bose–Einstein condensates in random potentials. Phys. Rev. E 77, 066708 (2008) Palpacelli, S., Succi, S.: Quantum lattice Boltzmann simulation of expanding Bose–Einstein condensates in random potentials. Phys. Rev. E 77, 066708 (2008)
67.
Zurück zum Zitat Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4, 471–509 (2005)MathSciNet Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4, 471–509 (2005)MathSciNet
68.
Zurück zum Zitat Zhang, J.Y., Yan, G.W.: Lattice Boltzmann model for the complex Ginzburg–Landau equation. Phys. Rev. E 81, 066705 (2010)MathSciNet Zhang, J.Y., Yan, G.W.: Lattice Boltzmann model for the complex Ginzburg–Landau equation. Phys. Rev. E 81, 066705 (2010)MathSciNet
69.
Zurück zum Zitat Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)MATHMathSciNet Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)MATHMathSciNet
70.
Zurück zum Zitat Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)MATH Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)MATH
71.
Zurück zum Zitat Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972) Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–636 (1972)
72.
Zurück zum Zitat Fewo, S.I., Kofane, T.C.: A collective variable approach for optical solitons in the cubic–quintic complex Ginzburg–Landau equation with third-order dispersion. Opt. Commun. 281, 2893–2906 (2008) Fewo, S.I., Kofane, T.C.: A collective variable approach for optical solitons in the cubic–quintic complex Ginzburg–Landau equation with third-order dispersion. Opt. Commun. 281, 2893–2906 (2008)
73.
Zurück zum Zitat Porsezian, K., Murali, R., Malomed, B.A., et al.: Modulational instability in linearly coupled complex cubic–quintic Ginzburg–Landau equations. Chaos Solitons Fractals 40, 1907–1913 (2009)MATHMathSciNet Porsezian, K., Murali, R., Malomed, B.A., et al.: Modulational instability in linearly coupled complex cubic–quintic Ginzburg–Landau equations. Chaos Solitons Fractals 40, 1907–1913 (2009)MATHMathSciNet
74.
Zurück zum Zitat Jiang, M.X., Wang, X.N., Ouyang, Q., et al.: Spatiotemporal chaos control with a target wave in the complex Ginzburg–Landau equation system. Phys. Rev. E 69, 056202 (2004) Jiang, M.X., Wang, X.N., Ouyang, Q., et al.: Spatiotemporal chaos control with a target wave in the complex Ginzburg–Landau equation system. Phys. Rev. E 69, 056202 (2004)
75.
Zurück zum Zitat Zhang, S.L., Bambi, H., Zhang, H.: Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg–Landau equation. Phys. Rev. E 67, 016214 (2003)MathSciNet Zhang, S.L., Bambi, H., Zhang, H.: Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg–Landau equation. Phys. Rev. E 67, 016214 (2003)MathSciNet
76.
Zurück zum Zitat Gong, Y.F., Christini, D.J.: Antispiral waves in reaction–diffusion systems. Phys. Rev. Lett. 90, 088302 (2003) Gong, Y.F., Christini, D.J.: Antispiral waves in reaction–diffusion systems. Phys. Rev. Lett. 90, 088302 (2003)
77.
Zurück zum Zitat Brusch, L., Nicola, M.E., Bär, M.: Comment on antispiral waves in reaction–diffusion systems. Phys. Rev. Lett. 92, 89801 (2004) Brusch, L., Nicola, M.E., Bär, M.: Comment on antispiral waves in reaction–diffusion systems. Phys. Rev. Lett. 92, 89801 (2004)
78.
Zurück zum Zitat Kapral, R., Showalter, K.: Chemical Waves and Patterns. Kluwer, Dordrecht (1995) Kapral, R., Showalter, K.: Chemical Waves and Patterns. Kluwer, Dordrecht (1995)
79.
Zurück zum Zitat Winfree, A.T.: When Time Breaks Down. Princeton University Press, NJ (1987) Winfree, A.T.: When Time Breaks Down. Princeton University Press, NJ (1987)
80.
Zurück zum Zitat Berenfeld, O., Wellner, M., Jalife, J., Pertsov, A.M.: Shaping of a scroll wave filament by cardiac fibers. Phys. Rev. E 63, 061901 (2001) Berenfeld, O., Wellner, M., Jalife, J., Pertsov, A.M.: Shaping of a scroll wave filament by cardiac fibers. Phys. Rev. E 63, 061901 (2001)
81.
Zurück zum Zitat Morgan, S.W., Biktasheva, I.V., Biktashev, V.N.: Control of scroll-wave turbulence using resonant perturbations. Phys. Rev. E 78, 046207 (2008)MathSciNet Morgan, S.W., Biktasheva, I.V., Biktashev, V.N.: Control of scroll-wave turbulence using resonant perturbations. Phys. Rev. E 78, 046207 (2008)MathSciNet
82.
Zurück zum Zitat Panfilov, A.V., Hogeweg, P.: Scroll breakup in a three-dimensional excitable medium. Phys. Rev. E 53, 1740–1743 (1996) Panfilov, A.V., Hogeweg, P.: Scroll breakup in a three-dimensional excitable medium. Phys. Rev. E 53, 1740–1743 (1996)
83.
Zurück zum Zitat Henry, H., Hakim, V.: Linear stability of scroll waves. Phys. Rev. Lett. 85, 5328–5331 (2000) Henry, H., Hakim, V.: Linear stability of scroll waves. Phys. Rev. Lett. 85, 5328–5331 (2000)
84.
Zurück zum Zitat Luengviriya, C., Hauser, M.J.B.: Stability of scroll ring orientation in an advective field. Phys. Rev. E 77, 056214 (2008) Luengviriya, C., Hauser, M.J.B.: Stability of scroll ring orientation in an advective field. Phys. Rev. E 77, 056214 (2008)
85.
Zurück zum Zitat Henry, H., Hakim, V.: Scroll waves in isotropic excitable media: linear instabilities, bifurcations, and restabilized states. Phys. Rev. E 65, 046235 (2002)MathSciNet Henry, H., Hakim, V.: Scroll waves in isotropic excitable media: linear instabilities, bifurcations, and restabilized states. Phys. Rev. E 65, 046235 (2002)MathSciNet
86.
Zurück zum Zitat Henry, H.: Spiral wave drift in an electric field and scroll wave instabilities. Phys. Rev. E 70, 026204 (2004) Henry, H.: Spiral wave drift in an electric field and scroll wave instabilities. Phys. Rev. E 70, 026204 (2004)
87.
Zurück zum Zitat Wang, C., Wang, S., Zhang, C., Ouyang, Q.: Spontaneous scroll ring creation and scroll instability in oscillatory medium with gradients. Phys. Rev. E 72, 066207 (2005) Wang, C., Wang, S., Zhang, C., Ouyang, Q.: Spontaneous scroll ring creation and scroll instability in oscillatory medium with gradients. Phys. Rev. E 72, 066207 (2005)
88.
Zurück zum Zitat Luengviriya, C., Storb, U., Lindner, G., et al.: Scroll wave instabilities in an excitable chemical medium. Phys. Rev. Lett. 100, 148302 (2008) Luengviriya, C., Storb, U., Lindner, G., et al.: Scroll wave instabilities in an excitable chemical medium. Phys. Rev. Lett. 100, 148302 (2008)
89.
Zurück zum Zitat Aranson, I., Mitkov, I.: Helicoidal instability of a scroll vortex in three-dimensional reaction–diffusion systems. Phys. Rev. E 58, 4556–4559 (1998) Aranson, I., Mitkov, I.: Helicoidal instability of a scroll vortex in three-dimensional reaction–diffusion systems. Phys. Rev. E 58, 4556–4559 (1998)
90.
Zurück zum Zitat Qu, Z., Xie, F., Garfinkel, A.: Diffusion-induced vortex filament instability in 3-dimensional excitable media. Phys. Rev. Lett. 83, 2668–2671 (1999) Qu, Z., Xie, F., Garfinkel, A.: Diffusion-induced vortex filament instability in 3-dimensional excitable media. Phys. Rev. Lett. 83, 2668–2671 (1999)
91.
Zurück zum Zitat Aranson, I.S., Bishop, A.R., Kramer, L.: Dynamics of vortex lines in the three-dimensional complex Ginzburg–Landau equation: instability, stretching, entanglement, and helices. Phys. Rev. E 57, 5276–5286 (1998) Aranson, I.S., Bishop, A.R., Kramer, L.: Dynamics of vortex lines in the three-dimensional complex Ginzburg–Landau equation: instability, stretching, entanglement, and helices. Phys. Rev. E 57, 5276–5286 (1998)
92.
Zurück zum Zitat Nam, K., Ott, E., Guzdar, P.N., Gabbay, M.: Stability of spiral wave vortex filament with phase twists. Phys. Rev. E 58, 2580–2585 (1998)MathSciNet Nam, K., Ott, E., Guzdar, P.N., Gabbay, M.: Stability of spiral wave vortex filament with phase twists. Phys. Rev. E 58, 2580–2585 (1998)MathSciNet
93.
Zurück zum Zitat Wellner, M., Berenfeld, O., Pertsov, A.M.: Predicting filament drift in twisted anisotropy. Phys. Rev. E 61, 1845–1850 (2000) Wellner, M., Berenfeld, O., Pertsov, A.M.: Predicting filament drift in twisted anisotropy. Phys. Rev. E 61, 1845–1850 (2000)
94.
Zurück zum Zitat Setayeshgar, S., Bernoff, A.J.: Scroll waves in the presence of slowly varying anisotropy with application to the heart. Phys. Rev. Lett. 88, 028101 (2002) Setayeshgar, S., Bernoff, A.J.: Scroll waves in the presence of slowly varying anisotropy with application to the heart. Phys. Rev. Lett. 88, 028101 (2002)
95.
Zurück zum Zitat Verschelde, H., Dierckx, H., Bernus, O.: Covariant stringlike dynamics of scroll wave filaments in anisotropic cardiac tissue. Phys. Rev. Lett. 99, 168104 (2007) Verschelde, H., Dierckx, H., Bernus, O.: Covariant stringlike dynamics of scroll wave filaments in anisotropic cardiac tissue. Phys. Rev. Lett. 99, 168104 (2007)
96.
Zurück zum Zitat Vinson, M., Pertsov, A.: Dynamics of scroll rings in a parameter gradient. Phys. Rev. E 59, 2764–2771 (1999)MathSciNet Vinson, M., Pertsov, A.: Dynamics of scroll rings in a parameter gradient. Phys. Rev. E 59, 2764–2771 (1999)MathSciNet
97.
Zurück zum Zitat Gabbay, M., Ott, E., Guzdar, P.N.: The dynamics of scroll wave filaments in the complex Ginzburg–Landau equation. Phys. D 118, 371–395 (1998)MATHMathSciNet Gabbay, M., Ott, E., Guzdar, P.N.: The dynamics of scroll wave filaments in the complex Ginzburg–Landau equation. Phys. D 118, 371–395 (1998)MATHMathSciNet
98.
Zurück zum Zitat ten Tusscher, K.H.W.J., Panfilov, A.V.: Eikonal formulation of the minimal principle for scroll wave filaments. Phys. Rev. Lett. 93, 108106 (2004) ten Tusscher, K.H.W.J., Panfilov, A.V.: Eikonal formulation of the minimal principle for scroll wave filaments. Phys. Rev. Lett. 93, 108106 (2004)
99.
Zurück zum Zitat Dierckx, H., Bernus, O., Verschelde, H.: A geometric theory for scroll wave filaments in anisotropic excitable media. Phys. D 238, 941–950 (2009)MATHMathSciNet Dierckx, H., Bernus, O., Verschelde, H.: A geometric theory for scroll wave filaments in anisotropic excitable media. Phys. D 238, 941–950 (2009)MATHMathSciNet
100.
Zurück zum Zitat Alonso, S., Panfilov, A.V.: Negative filament tension at high excitability in a model of cardiac tissue. Phys. Rev. Lett. 100, 218101 (2008) Alonso, S., Panfilov, A.V.: Negative filament tension at high excitability in a model of cardiac tissue. Phys. Rev. Lett. 100, 218101 (2008)
101.
Zurück zum Zitat Gabbay, M., Ott, E., Guzdar, P.N.: Motion of scroll wave filaments in the complex Ginzburg–Landau equation. Phys. Rev. Lett. 78, 2012–2015 (1997) Gabbay, M., Ott, E., Guzdar, P.N.: Motion of scroll wave filaments in the complex Ginzburg–Landau equation. Phys. Rev. Lett. 78, 2012–2015 (1997)
102.
Zurück zum Zitat Alonso, S., Kähler, R., Mikhailov, A.S., Sagués, F.: Expanding scroll rings and negative tension turbulence in a model of excitable media. Phys. Rev. E 70, 056201 (2004)MathSciNet Alonso, S., Kähler, R., Mikhailov, A.S., Sagués, F.: Expanding scroll rings and negative tension turbulence in a model of excitable media. Phys. Rev. E 70, 056201 (2004)MathSciNet
103.
Zurück zum Zitat Luengviriya, C., Müller, S.C., Hauser, M.J.B.: Reorientation of scroll rings in an advective field. Phys. Rev. E 77, 015201(R) (2008) Luengviriya, C., Müller, S.C., Hauser, M.J.B.: Reorientation of scroll rings in an advective field. Phys. Rev. E 77, 015201(R) (2008)
104.
Zurück zum Zitat Bray, M.A., Wikswo, J.P.: Interaction dynamics of a pair of vortex filament rings. Phys. Rev. Lett. 90, 238303 (2003) Bray, M.A., Wikswo, J.P.: Interaction dynamics of a pair of vortex filament rings. Phys. Rev. Lett. 90, 238303 (2003)
105.
Zurück zum Zitat Bánsági, T., Steinbock, O.: Nucleation and collapse of scroll rings in excitable media. Phys. Rev. Lett. 97, 198301 (2006) Bánsági, T., Steinbock, O.: Nucleation and collapse of scroll rings in excitable media. Phys. Rev. Lett. 97, 198301 (2006)
106.
Zurück zum Zitat Wu, Y., Qiao, C., Ouyang, Q., Wang, H.: Control of spiral turbulence by periodic forcing in a reaction–diffusion system with gradients. Phys. Rev. E 77, 036226 (2008) Wu, Y., Qiao, C., Ouyang, Q., Wang, H.: Control of spiral turbulence by periodic forcing in a reaction–diffusion system with gradients. Phys. Rev. E 77, 036226 (2008)
107.
Zurück zum Zitat Alonso, S., Sancho, J.M., Sagués, F.: Suppression of scroll wave turbulence by noise. Phys. Rev. E 70, 067201 (2004) Alonso, S., Sancho, J.M., Sagués, F.: Suppression of scroll wave turbulence by noise. Phys. Rev. E 70, 067201 (2004)
108.
Zurück zum Zitat Wu, N.J., Zhang, H., Ying, H.P., et al.: Suppression of winfree turbulence under weak spatiotemporal perturbation. Phys. Rev. E 73, 060901(R) (2006) Wu, N.J., Zhang, H., Ying, H.P., et al.: Suppression of winfree turbulence under weak spatiotemporal perturbation. Phys. Rev. E 73, 060901(R) (2006)
109.
Zurück zum Zitat Briscolini, M., Santangelo, P., Succi, S., Benzi, R.: Extended self-similarity in the numerical simulation of three-dimensional homogeneous flows. Phys. Rev. E 50, R1745–R1747 (1994) Briscolini, M., Santangelo, P., Succi, S., Benzi, R.: Extended self-similarity in the numerical simulation of three-dimensional homogeneous flows. Phys. Rev. E 50, R1745–R1747 (1994)
110.
Zurück zum Zitat Barkley, D.: A model for fast computer simulation of waves in excitable media. Phys. D 49, 61–70 (1991) Barkley, D.: A model for fast computer simulation of waves in excitable media. Phys. D 49, 61–70 (1991)
111.
Zurück zum Zitat Rusakov, A., Medvinsky, A.B., Panfilov, A.V.: Scroll waves meandering in a model of an excitable medium. Phys. Rev. E 72, 022902 (2005)MathSciNet Rusakov, A., Medvinsky, A.B., Panfilov, A.V.: Scroll waves meandering in a model of an excitable medium. Phys. Rev. E 72, 022902 (2005)MathSciNet
112.
Zurück zum Zitat Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970) Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)
Metadaten
Titel
Three-Dimensional Lattice Boltzmann Model for the Complex Ginzburg–Landau Equation
verfasst von
Jianying Zhang
Guangwu Yan
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2014
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-013-9811-z

Weitere Artikel der Ausgabe 3/2014

Journal of Scientific Computing 3/2014 Zur Ausgabe

Premium Partner