Skip to main content
Erschienen in: Wireless Networks 6/2019

26.04.2018

Throughput performance of NOMA in WLANs with a CSMA MAC protocol

verfasst von: Md. Forkan Uddin

Erschienen in: Wireless Networks | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The existing medium access control (MAC) protocols are not able to utilize the full opportunities from power-domain non-orthogonal multiple access (NOMA) technique in wireless local area networks (WLANs). In this paper, we propose a carrier sense multiple access (CSMA) MAC protocol to increase downlink throughput by utilizing the opportunities offered by NOMA technique in downlink access of WLANs. For downlink transmission, an algorithm is developed to select an optimal user-set with appropriate power allocation from a randomly selected user-set. We then develop an analytical model to compute the uplink and downlink throughputs of a WLAN under the proposed MAC protocol by modelling the WLAN system as a discrete time Markov chain. The uplink and downlink throughputs of a WLAN under the proposed MAC protocol are determined by means of the analytical model and the accuracy of the analytical model is verified via extensive simulation. It is demonstrated that the proposed NOMA based MAC protocol improves the downlink throughput significantly compared to an orthogonal multiple access (OMA) based traditional CSMA MAC protocol without reducing the uplink throughput considerably. For a reasonable configuration, the downlink throughput gain is found to be more than 250%. We also study the throughput performance of the proposed MAC protocol for different transmit power levels, user medium access rates, data rates, path loss exponents and number of users in WLAN. We find that the throughput gain obtained by the proposed MAC protocol increases with increasing the transmit power and decreases with increasing the data rates and path loss. However, the change in the throughput gain obtained by the proposed MAC protocol is not significant for increasing the number of users and the user medium access rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In the protocol interference model, the received signal strengths of all the received signals are assumed to be equal.
 
Literatur
1.
Zurück zum Zitat Ericsson, L. (2011). More than 50 billion connected devices. White Paper, 1–12. Ericsson, L. (2011). More than 50 billion connected devices. White Paper, 1–12.
2.
Zurück zum Zitat Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefMATH Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefMATH
3.
Zurück zum Zitat Andrews, J., Buzzi, S., Choi, W., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef Andrews, J., Buzzi, S., Choi, W., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef
4.
Zurück zum Zitat Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef Marzetta, T. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRef
5.
Zurück zum Zitat Adigun, O., Pirmoradian, M., & Politis, C. (2015). Cognitive radio for 5G wireless networks. Fundamentals of 5G mobile networks. Chichester: Wiley. Adigun, O., Pirmoradian, M., & Politis, C. (2015). Cognitive radio for 5G wireless networks. Fundamentals of 5G mobile networks. Chichester: Wiley.
6.
Zurück zum Zitat Rappaport, T., Sun, S., Mayzus, R., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef Rappaport, T., Sun, S., Mayzus, R., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.CrossRef
7.
Zurück zum Zitat Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the IEEE Vehicular Technology Conference. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the IEEE Vehicular Technology Conference.
8.
Zurück zum Zitat Dai, L., Wang, B., Yuan, Y., Han, S., ChihLin, I., & Wang, Z. (2015). Nonorthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.CrossRef Dai, L., Wang, B., Yuan, Y., Han, S., ChihLin, I., & Wang, Z. (2015). Nonorthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.CrossRef
9.
Zurück zum Zitat Wei, Z., Yuan, J., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Communications, 14(4), 17–26. Wei, Z., Yuan, J., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Communications, 14(4), 17–26.
10.
Zurück zum Zitat Anxin, L., Yang, L., Xiaohang, C., & Huiling, J. (2015). Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G. China Communications, 12, 28–37.CrossRef Anxin, L., Yang, L., Xiaohang, C., & Huiling, J. (2015). Non-orthogonal multiple access (NOMA) for future downlink radio access of 5G. China Communications, 12, 28–37.CrossRef
11.
Zurück zum Zitat Tian, Z., Wang, J., Wang, J., Zhang, C., Tang, Z., & Wu, F. (2017). More clients connected by NOMA in the downlink transmission of WLANs. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1968–1973). Tian, Z., Wang, J., Wang, J., Zhang, C., Tang, Z., & Wu, F. (2017). More clients connected by NOMA in the downlink transmission of WLANs. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1968–1973).
12.
Zurück zum Zitat Shin, K.-S., & Jo, O. (2017). Joint scheduling and power allocation using non-orthogonal multiple access in directional beam-based WLAN systems. IEEE Wireless Communications Letter, 6(4), 482–485.CrossRef Shin, K.-S., & Jo, O. (2017). Joint scheduling and power allocation using non-orthogonal multiple access in directional beam-based WLAN systems. IEEE Wireless Communications Letter, 6(4), 482–485.CrossRef
13.
Zurück zum Zitat IEEE Std. 802.11. (1997). Wireless LAN medium access control (MAC) and physical layer (PHY) specifiation. New York: IEEE. IEEE Std. 802.11. (1997). Wireless LAN medium access control (MAC) and physical layer (PHY) specifiation. New York: IEEE.
15.
Zurück zum Zitat Vanka, S., Srinivasa, S., Gong, Z., Vizi, P., Stamatiou, K., & Haenggi, M. (2012). Superposition coding strategies: Design and experimental evaluation. IEEE Transactions Wireless Communications, 11(7), 2628–2639.CrossRef Vanka, S., Srinivasa, S., Gong, Z., Vizi, P., Stamatiou, K., & Haenggi, M. (2012). Superposition coding strategies: Design and experimental evaluation. IEEE Transactions Wireless Communications, 11(7), 2628–2639.CrossRef
16.
Zurück zum Zitat Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation. IEICE Transactions Communications, E98–B(3), 403–414.CrossRef Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation. IEICE Transactions Communications, E98–B(3), 403–414.CrossRef
17.
Zurück zum Zitat Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2016). Power domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys Tutorials, 19(2), 721–742.CrossRef Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2016). Power domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys Tutorials, 19(2), 721–742.CrossRef
18.
Zurück zum Zitat Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letter, 21(12), 1501–1505.CrossRef Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letter, 21(12), 1501–1505.CrossRef
19.
Zurück zum Zitat Wang, P., Xiao, J., & Ping, L. (2006). Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine, 1, 4–11.CrossRef Wang, P., Xiao, J., & Ping, L. (2006). Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine, 1, 4–11.CrossRef
20.
Zurück zum Zitat Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE Journal Selected Areas Communications, 35(10), 2413–2424.CrossRef Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE Journal Selected Areas Communications, 35(10), 2413–2424.CrossRef
21.
Zurück zum Zitat Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129.CrossRef Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129.CrossRef
22.
Zurück zum Zitat Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In IEEE Personal, Indoor and Mobile Radio Communications Symposium (pp. 611–615). Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In IEEE Personal, Indoor and Mobile Radio Communications Symposium (pp. 611–615).
23.
Zurück zum Zitat Di, B., Bayat, S., Song, L., & Li, Y. (2015). Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory. In Proceedings of the IEEE Global Communications Conference (pp. 1–6). Di, B., Bayat, S., Song, L., & Li, Y. (2015). Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory. In Proceedings of the IEEE Global Communications Conference (pp. 1–6).
24.
Zurück zum Zitat Xu, P., & Cumanan, K. (2017). Optimal power allocation scheme for non-orthogonal multiple access with \(\alpha\)-fairness. IEEE Journal Selected Areas Communications, 35(10), 2357–2369.CrossRef Xu, P., & Cumanan, K. (2017). Optimal power allocation scheme for non-orthogonal multiple access with \(\alpha\)-fairness. IEEE Journal Selected Areas Communications, 35(10), 2357–2369.CrossRef
25.
Zurück zum Zitat Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal Selected Areas Communications, 35(12), 2744–2757. Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal Selected Areas Communications, 35(12), 2744–2757.
26.
Zurück zum Zitat Sun, Y., Ng, D. W. K., Ding, Z., & Schober, R. (2016). Optimal joint power and subcarrier allocation for MC-NOMA systems. In Proceedings of the IEEE Global Communications Conference. Sun, Y., Ng, D. W. K., Ding, Z., & Schober, R. (2016). Optimal joint power and subcarrier allocation for MC-NOMA systems. In Proceedings of the IEEE Global Communications Conference.
27.
Zurück zum Zitat Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2015). Joint optimization of power and channel allocation with non-orthogonal multiple access for 5G cellular systems. In Proceedings of the IEEE Global Communications Conference (pp. 1–6). Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2015). Joint optimization of power and channel allocation with non-orthogonal multiple access for 5G cellular systems. In Proceedings of the IEEE Global Communications Conference (pp. 1–6).
28.
Zurück zum Zitat Liu, Y.-F., & Dai, Y.-H. (2014). On the complexity of joint subcarrier and power allocation for multi-user OFDMA systems. IEEE Transactions Signal Processing, 62(3), 583–596.MathSciNetCrossRefMATH Liu, Y.-F., & Dai, Y.-H. (2014). On the complexity of joint subcarrier and power allocation for multi-user OFDMA systems. IEEE Transactions Signal Processing, 62(3), 583–596.MathSciNetCrossRefMATH
29.
Zurück zum Zitat Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions Wireless Communications, 15(12), 8580–8594.CrossRef Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions Wireless Communications, 15(12), 8580–8594.CrossRef
30.
Zurück zum Zitat Liu, F., & Petrova, M. (2017). Performance of proportional fair scheduling for downlink non-orthogonal multiple access systems. Computing Research Repository. CoRR. arXiv:abs/1703.03113. Liu, F., & Petrova, M. (2017). Performance of proportional fair scheduling for downlink non-orthogonal multiple access systems. Computing Research Repository. CoRR. arXiv:​abs/​1703.​03113.
31.
Zurück zum Zitat Bhatia, S., & Chandni., C. (2017). An efficient scheduling algorithm for NOMA in LTE and 5G Networks. International Journal of Trend in Research and Development, 4(4), 522–525. Bhatia, S., & Chandni., C. (2017). An efficient scheduling algorithm for NOMA in LTE and 5G Networks. International Journal of Trend in Research and Development, 4(4), 522–525.
32.
Zurück zum Zitat Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of nonorthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In IEEE International Symposium on Wireless Communication Systems (pp. 476–480). Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of nonorthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In IEEE International Symposium on Wireless Communication Systems (pp. 476–480).
33.
Zurück zum Zitat Liu, S., Zhang, C., & Lyu, G. (2015). User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system. In Proceedings of the IEEE International Communications Conference (pp. 2561–2565). Liu, S., Zhang, C., & Lyu, G. (2015). User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system. In Proceedings of the IEEE International Communications Conference (pp. 2561–2565).
34.
Zurück zum Zitat Liu, F., Mahonen, P., & Petrova, M. (2015). Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In Proceedings of the IEEE PIMRC (pp. 1306–1310). Liu, F., Mahonen, P., & Petrova, M. (2015). Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In Proceedings of the IEEE PIMRC (pp. 1306–1310).
35.
Zurück zum Zitat Cui, J., Liu, Y., Ding, Z., Fan, P., & Nallanathan, A. (2018). Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Transactions on Wireless Communications, 17(3), 1502–1517.CrossRef Cui, J., Liu, Y., Ding, Z., Fan, P., & Nallanathan, A. (2018). Optimal user scheduling and power allocation for millimeter wave NOMA systems. IEEE Transactions on Wireless Communications, 17(3), 1502–1517.CrossRef
36.
Zurück zum Zitat Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal Selected Areas Communications, 35(10), 2181–2195.CrossRef Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal Selected Areas Communications, 35(10), 2181–2195.CrossRef
37.
Zurück zum Zitat Choi, J. (2017). NOMA based random access with multichannel ALOHA. IEEE Journal Selected Areas Communications, 35(12), 2736–2743.CrossRef Choi, J. (2017). NOMA based random access with multichannel ALOHA. IEEE Journal Selected Areas Communications, 35(12), 2736–2743.CrossRef
38.
Zurück zum Zitat Liu, Y., Li, X., Yu, F. R., Ji, H., Zhang, H., & Leung, V. C. (2017). Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE Journal Selected Areas in Communications, 35(10), 2295–2311.CrossRef Liu, Y., Li, X., Yu, F. R., Ji, H., Zhang, H., & Leung, V. C. (2017). Grouping and cooperating among access points in user-centric ultra-dense networks with non-orthogonal multiple access. IEEE Journal Selected Areas in Communications, 35(10), 2295–2311.CrossRef
39.
Zurück zum Zitat Sankararaman, A., & Baccelli, F. (2015). CSMA k-SIC-A class of distributed MAC protocols and their performance evaluation. In Proceedings of the IEEE INFOCOM. Sankararaman, A., & Baccelli, F. (2015). CSMA k-SIC-A class of distributed MAC protocols and their performance evaluation. In Proceedings of the IEEE INFOCOM.
40.
Zurück zum Zitat Uddin, M. F., & Mahmud, M. S. (2017). Carrier sensing based medium access control protocol for WLANs exploiting successive interference cancellation. IEEE Transactions on Wireless Communications, 16(6), 4120–4135.CrossRef Uddin, M. F., & Mahmud, M. S. (2017). Carrier sensing based medium access control protocol for WLANs exploiting successive interference cancellation. IEEE Transactions on Wireless Communications, 16(6), 4120–4135.CrossRef
42.
Zurück zum Zitat Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal Selected Areas in Communications, 18(3), 535–547.CrossRef Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal Selected Areas in Communications, 18(3), 535–547.CrossRef
43.
Zurück zum Zitat Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in a distributed CSMA algorithm: Collisions and stability. IEEE/ACM Transactions on Networking, 19(23), 816–823.CrossRef Jiang, L., & Walrand, J. (2011). Approaching throughput-optimality in a distributed CSMA algorithm: Collisions and stability. IEEE/ACM Transactions on Networking, 19(23), 816–823.CrossRef
44.
Zurück zum Zitat Ni, J., Tan, B., & Srikant, R. (2010). Q-CSMA: Queue length based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks. In Proceedings of the IEEE INFOCOM Mini-Conference (pp. 1–5). Ni, J., Tan, B., & Srikant, R. (2010). Q-CSMA: Queue length based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks. In Proceedings of the IEEE INFOCOM Mini-Conference (pp. 1–5).
45.
Zurück zum Zitat Qian, D., Zheng, D., Zhang, J., Shroff, N. B., & Joo, C. (2013). Distributed CSMA algorithms for link scheduling in multihop MIMO networks under SINR model. IEEE/ACM Transactions on Networking, 21(3), 746–759.CrossRef Qian, D., Zheng, D., Zhang, J., Shroff, N. B., & Joo, C. (2013). Distributed CSMA algorithms for link scheduling in multihop MIMO networks under SINR model. IEEE/ACM Transactions on Networking, 21(3), 746–759.CrossRef
46.
Zurück zum Zitat Hadzi-Velkov, Z., & Spasenovski, B. (2002). Capture effect in IEEE 802.11 basic service area under influence of rayleigh fading and near/far effect. In IEEE Personal Indoor and Mobile Radio Communications Symposium (pp. 172–176). Hadzi-Velkov, Z., & Spasenovski, B. (2002). Capture effect in IEEE 802.11 basic service area under influence of rayleigh fading and near/far effect. In IEEE Personal Indoor and Mobile Radio Communications Symposium (pp. 172–176).
47.
Zurück zum Zitat Kim, J. H., & Lee, J. K. (1999). Capture effects of wirelss CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology, 48, 1277–1286.CrossRef Kim, J. H., & Lee, J. K. (1999). Capture effects of wirelss CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology, 48, 1277–1286.CrossRef
48.
Zurück zum Zitat Li, X., & Zeng, Q. (2006). Performance analysis of the IEEE 802.11 MAC protocols over a WLAN with capture effect. Information and Media Technologies, 1, 679–685. Li, X., & Zeng, Q. (2006). Performance analysis of the IEEE 802.11 MAC protocols over a WLAN with capture effect. Information and Media Technologies, 1, 679–685.
49.
Zurück zum Zitat Iyer, A., Rosenberg, C., & Karnik, A. (2009). What is the right model for wireless channel interference? IEEE/ACM Transaction on Networking, 8(5), 2662–2671. Iyer, A., Rosenberg, C., & Karnik, A. (2009). What is the right model for wireless channel interference? IEEE/ACM Transaction on Networking, 8(5), 2662–2671.
50.
Zurück zum Zitat Uddin, M. F., Rosenberg, C., Zhuang, W., Mitran, P., & Girard, A. (2014). Joint routing and medium access control in fixed random access wireless multihop networks. IEEE/ACM Transaction on Networking, 22(1), 80–93.CrossRef Uddin, M. F., Rosenberg, C., Zhuang, W., Mitran, P., & Girard, A. (2014). Joint routing and medium access control in fixed random access wireless multihop networks. IEEE/ACM Transaction on Networking, 22(1), 80–93.CrossRef
51.
Zurück zum Zitat Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation in non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343. Ali, M. S., Tabassum, H., & Hossain, E. (2016). Dynamic user clustering and power allocation in non-orthogonal multiple access (NOMA) systems. IEEE Access, 4, 6325–6343.
Metadaten
Titel
Throughput performance of NOMA in WLANs with a CSMA MAC protocol
verfasst von
Md. Forkan Uddin
Publikationsdatum
26.04.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1730-3

Weitere Artikel der Ausgabe 6/2019

Wireless Networks 6/2019 Zur Ausgabe

Neuer Inhalt