Skip to main content
Erschienen in: Wireless Networks 8/2012

01.11.2012

Throughput performance of parallel and repetition coding in incremental decode-and-forward relaying

verfasst von: Hirley Alves, Richard Demo Souza, Gustavo Fraidenraich, Marcelo Eduardo Pellenz

Erschienen in: Wireless Networks | Ausgabe 8/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The throughput performance of cooperative repetition and parallel coding in incremental decode-and-forward is investigated. Four transmission methods are considered: parallel coding with and without distributed space-time coding (PC-ST and PC, respectively); and repetition coding with and without Chase combining at the destination (RC and SC, respectively). The analysis is based on the mutual information seen at the receiver for each scheme. Exact expressions for the outage probability and throughput for all methods are derived. Both ad-hoc and infra-structured relaying scenarios are investigated. Results show that SC can perform very close to RC, PC and PC-ST in terms of throughput, specially in the case of infra-structured relaying or adequate power and rate allocation. The conclusion is that SC would be a better option in practice, since it requires a simpler receiver than PC-ST, PC, and RC.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In SC, as the receiver does not combine the original and the retransmitted messages, the outage is determined by the link with the best SNR between the source to destination and the relay to destination links. Thus, we can say that the receiver applies “selection combining” between the signals received from the source and from the relay.
 
2
In this paper all channels are modeled as a random variable from a complex Gaussian distribution with zero mean and unity variance, so that the channel envelope is Rayleigh distributed with unity energy.
 
3
The source and the relay retransmit in perfect synchronism only if the relay was able to decode the original source transmission. Otherwise, the retransmission comes from the source alone.
 
4
The Matlab function fmincon was used to numerically solve the optimization problem.
 
5
One might argue that power allocation between source and relay should not be considered for the infra-structured scenario, since the relay is deployed by the service provider. However, we consider the power allocation between source and relay because in an energy efficiency sense it is interesting to see how well the methods can perform under a limited amount of resources (one could compare the efficiency of ad-hoc relaying to that of infra-structured relaying). Moreover, the general conclusion—that the schemes perform basically the same—simply does not change if one considers only rate allocation in the infra-structured scenario.
 
Literatur
1.
Zurück zum Zitat Goldsmith, A. (2005). Wireless communications (1st edn.). Cambridge: Cambridge University Press. Goldsmith, A. (2005). Wireless communications (1st edn.). Cambridge: Cambridge University Press.
2.
Zurück zum Zitat Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRef Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRef
3.
Zurück zum Zitat Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.CrossRef Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.CrossRef
4.
Zurück zum Zitat Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.CrossRef
5.
Zurück zum Zitat Van der Meulen, E. C. (1971). Three-terminal comunication channels. Advanced Applied Probability, 3, 120–154.MATHCrossRef Van der Meulen, E. C. (1971). Three-terminal comunication channels. Advanced Applied Probability, 3, 120–154.MATHCrossRef
6.
Zurück zum Zitat Stefanov, A., & Erkip, E. (2004). Cooperative coding for wireless networks. IEEE Transactions on Communications, 52(9), 1470–1476.CrossRef Stefanov, A., & Erkip, E. (2004). Cooperative coding for wireless networks. IEEE Transactions on Communications, 52(9), 1470–1476.CrossRef
7.
Zurück zum Zitat Hunter, T. E., Sanayei, S., & Nosratinia, A. (2006). Outage analysis of coded cooperation. IEEE Transactions on Information Theory, 52(2), 375–391.MathSciNetCrossRef Hunter, T. E., Sanayei, S., & Nosratinia, A. (2006). Outage analysis of coded cooperation. IEEE Transactions on Information Theory, 52(2), 375–391.MathSciNetCrossRef
8.
Zurück zum Zitat Zhao, B., & Valenti, M.C. (2003). Distributed turbo coded diversity for relay channel. IEE Electronics Letters, 39(10), 786–787.CrossRef Zhao, B., & Valenti, M.C. (2003). Distributed turbo coded diversity for relay channel. IEE Electronics Letters, 39(10), 786–787.CrossRef
9.
Zurück zum Zitat Zhang, Z., & Duman, T. M. (2005). Capacity-approaching turbo coding and iterative decoding for relay channels. IEEE Transactions on Communications, 53(11), 1895–1885.CrossRef Zhang, Z., & Duman, T. M. (2005). Capacity-approaching turbo coding and iterative decoding for relay channels. IEEE Transactions on Communications, 53(11), 1895–1885.CrossRef
10.
Zurück zum Zitat Hu, J., & Duman, T. M. (2007). Low density parity check codes over wireless relay channels. IEEE Transactions on Wireless Communications, 6(9), 3384–3394.CrossRef Hu, J., & Duman, T. M. (2007). Low density parity check codes over wireless relay channels. IEEE Transactions on Wireless Communications, 6(9), 3384–3394.CrossRef
11.
Zurück zum Zitat Khormuji, M., & Larsson, E. (2009). Cooperative transmission based on decode-and-forward relaying with partial repetition coding. IEEE Transactions on Wireless Communications, 8(4), 1716–1725.CrossRef Khormuji, M., & Larsson, E. (2009). Cooperative transmission based on decode-and-forward relaying with partial repetition coding. IEEE Transactions on Wireless Communications, 8(4), 1716–1725.CrossRef
12.
Zurück zum Zitat Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.MathSciNetCrossRef Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.MathSciNetCrossRef
13.
Zurück zum Zitat Chase, D. (1985). Code combining—a maximum-likelihood decoding approach for combining an arbitrary number of noisy frames. IEEE Transactions on Communications, 33(5), 385–393.CrossRef Chase, D. (1985). Code combining—a maximum-likelihood decoding approach for combining an arbitrary number of noisy frames. IEEE Transactions on Communications, 33(5), 385–393.CrossRef
14.
Zurück zum Zitat Tabet, T., Dusad, S., & Knopp, R. (2007). Diversity-multiplexing-delay tradeoff in half-duplex ARQ relay channels. IEEE Transactions on Informations Theory, 53(10), 3797–3805.MathSciNetCrossRef Tabet, T., Dusad, S., & Knopp, R. (2007). Diversity-multiplexing-delay tradeoff in half-duplex ARQ relay channels. IEEE Transactions on Informations Theory, 53(10), 3797–3805.MathSciNetCrossRef
15.
Zurück zum Zitat Caire, G., & Tuninetti, D. (2001). The throughput of Hybrid-ARQ protocols for the Gaussian collision channel. IEEE Transactions on Informations Theory, 47(5), 1971–1988.MathSciNetMATHCrossRef Caire, G., & Tuninetti, D. (2001). The throughput of Hybrid-ARQ protocols for the Gaussian collision channel. IEEE Transactions on Informations Theory, 47(5), 1971–1988.MathSciNetMATHCrossRef
16.
Zurück zum Zitat Malkamaki, E. & Leib, H. (1999). Coded diversity on block-fading channels. IEEE Transactions on Informations Theory, 45(2), 771–781.MathSciNetCrossRef Malkamaki, E. & Leib, H. (1999). Coded diversity on block-fading channels. IEEE Transactions on Informations Theory, 45(2), 771–781.MathSciNetCrossRef
17.
Zurück zum Zitat Knopp, R., & Humblet, P. (2000). On coding for block fading channels. IEEE Transactions on Informations Theory, 46(1), 189–205.MATHCrossRef Knopp, R., & Humblet, P. (2000). On coding for block fading channels. IEEE Transactions on Informations Theory, 46(1), 189–205.MATHCrossRef
18.
Zurück zum Zitat Biglieri, E., Caire, G., & Taricco, G. (2001). Limiting performance of block-fading channels with multiple antennas. IEEE Transactions on Informations Theory, 47(4), 1273–1289.MathSciNetMATHCrossRef Biglieri, E., Caire, G., & Taricco, G. (2001). Limiting performance of block-fading channels with multiple antennas. IEEE Transactions on Informations Theory, 47(4), 1273–1289.MathSciNetMATHCrossRef
19.
Zurück zum Zitat Cheng, J.-F. (2006). Coding performance of hybrid ARQ schemes. IEEE Transactions on Communications, 54(6), 1017–1029.CrossRef Cheng, J.-F. (2006). Coding performance of hybrid ARQ schemes. IEEE Transactions on Communications, 54(6), 1017–1029.CrossRef
20.
Zurück zum Zitat Papolulis, A., & Pillai, U. (2002). Probability, random variables amd stochastic processes (4th edn.). New York: McGRaw Hill. Papolulis, A., & Pillai, U. (2002). Probability, random variables amd stochastic processes (4th edn.). New York: McGRaw Hill.
21.
Zurück zum Zitat Zheng, L., & Tse, D. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.MATHCrossRef Zheng, L., & Tse, D. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.MATHCrossRef
22.
Zurück zum Zitat Nabar, R. U., Bolcskei, H., Kneubuhler, F. W. (2004, Aug). Fading relay channels: Performance limits and space—time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109. Nabar, R. U., Bolcskei, H., Kneubuhler, F. W. (2004, Aug). Fading relay channels: Performance limits and space—time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109.
23.
Zurück zum Zitat Lin, S., Costello, D., & Miller, M. (1984). Automatic-repeat-request error-control schemes. IEEE Communications Magazine, 22(12), 5–17.CrossRef Lin, S., Costello, D., & Miller, M. (1984). Automatic-repeat-request error-control schemes. IEEE Communications Magazine, 22(12), 5–17.CrossRef
24.
Zurück zum Zitat Sadek, A. K., Han, Z., & Liu, K. J. R. (2010). Distributed relay-assignment protocols for coverage expansion in cooperative wireless networks. IEEE Transactions on Mobile Computing, 9(4), 505–515.CrossRef Sadek, A. K., Han, Z., & Liu, K. J. R. (2010). Distributed relay-assignment protocols for coverage expansion in cooperative wireless networks. IEEE Transactions on Mobile Computing, 9(4), 505–515.CrossRef
25.
Zurück zum Zitat Ichitsubo, S. (1996). 2 GHz-band propagation loss prediction in urban areas; antenna heights ranging from ground to building roof. IEICE Technical Report. Ichitsubo, S. (1996). 2 GHz-band propagation loss prediction in urban areas; antenna heights ranging from ground to building roof. IEICE Technical Report.
Metadaten
Titel
Throughput performance of parallel and repetition coding in incremental decode-and-forward relaying
verfasst von
Hirley Alves
Richard Demo Souza
Gustavo Fraidenraich
Marcelo Eduardo Pellenz
Publikationsdatum
01.11.2012
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2012
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-012-0440-5

Weitere Artikel der Ausgabe 8/2012

Wireless Networks 8/2012 Zur Ausgabe

Neuer Inhalt