Skip to main content
Erschienen in: Journal of Computational Electronics 2/2019

03.01.2019

Time-dependent equivalent circuit modeling of ferromagnetic single electron transistors

verfasst von: Kasra Jamshidnezhad, Mohammad Javad Sharifi

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a physics-based time-dependent circuit model is proposed for ferromagnetic single electron transistors (FSETs). This model is based on a modified version of the single electronics orthodox theory and obtained by simultaneously solving the governing equations. The introduced model is valid for single or multi gate, symmetric or asymmetric, and magnetic or nonmagnetic island FSETs. The model describes accurately FSET characteristics for a wide range of temperatures and drain to source voltages and also includes the spin relaxation time effect. The proposed model is implemented in a commercial circuit simulator HSPICE for use in circuit simulation. Two series of SPICE simulations are then successfully carried out. In the first simulations, different DC characteristics of a nonmagnetic island FSET are produced and verified against the existing numerical and analytical results with good agreements. In the second simulations, the transient behavior of a nonmagnetic island FSET is analyzed by considering the effects of temperature and spin relaxation time. It is shown that there are two different time scales in the transient response; the shorter one originates from the discrete coulomb charging of the island and the longer one from the spin relaxation effect. As an application example of the model at the circuit level, a magnetic island FSET-based inverter is simulated. These results are verified against Monte Carlo simulation results with excellent agreement. Then, the transient behavior of the inverter is investigated using the model for the first time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Flatte, M.E.: Spintronics. IEEE Trans. Electron Dev. 54, 907–920 (2007)CrossRef Flatte, M.E.: Spintronics. IEEE Trans. Electron Dev. 54, 907–920 (2007)CrossRef
2.
Zurück zum Zitat Likharev, K. K.: Single-electron devices and their applications. in Proceedings of IEEE April 1999, pp. 606–632 Likharev, K. K.: Single-electron devices and their applications. in Proceedings of IEEE April 1999, pp. 606–632
3.
Zurück zum Zitat Johnson, M., Silsbee, R.H.: Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)CrossRef Johnson, M., Silsbee, R.H.: Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)CrossRef
4.
Zurück zum Zitat Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975)CrossRef Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975)CrossRef
5.
Zurück zum Zitat Yakushiji, K., Ernult, F., Imamura, H., Yamane, K., Mitani, S., Takanashi, K., Takahashi, S., Maekawa, S., Fujimori, H.: Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat. Mater. 4, 57–61 (2005)CrossRef Yakushiji, K., Ernult, F., Imamura, H., Yamane, K., Mitani, S., Takanashi, K., Takahashi, S., Maekawa, S., Fujimori, H.: Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat. Mater. 4, 57–61 (2005)CrossRef
6.
Zurück zum Zitat Lee, T.H., Chen, C.D.: Probing spin accumulation induced magnetocapacitance in a single electron transistor. Sci. Rep. 5, 1–6 (2015) Lee, T.H., Chen, C.D.: Probing spin accumulation induced magnetocapacitance in a single electron transistor. Sci. Rep. 5, 1–6 (2015)
7.
Zurück zum Zitat Ernult, F., Yakushiji, K., Mitani, S., Takanashi, K.: Spin accumulation in metallic nanoparticles. J. Phys. Condens. Matter 19, 165214-1–165214-19 (2007)CrossRef Ernult, F., Yakushiji, K., Mitani, S., Takanashi, K.: Spin accumulation in metallic nanoparticles. J. Phys. Condens. Matter 19, 165214-1–165214-19 (2007)CrossRef
8.
Zurück zum Zitat Bernand-Mantel, A., Seneor, P., Lidgi, N., Munoz, M., Cros, V.: Evidence for spin injection in a single metallic nanoparticle: a step towards nanospintronics. Appl. Phys. Lett. 89, 062502-1–062502-3 (2006)CrossRef Bernand-Mantel, A., Seneor, P., Lidgi, N., Munoz, M., Cros, V.: Evidence for spin injection in a single metallic nanoparticle: a step towards nanospintronics. Appl. Phys. Lett. 89, 062502-1–062502-3 (2006)CrossRef
9.
Zurück zum Zitat Mitani, S., Nogi, Y., Wang, H., Yakushiji, K., Ernult, F., Takanashi, K.: Current-induced tunnel magnetoresistance due to spin accumulation in Au nanoparticles. Appl. Phys. Lett 92, 152509-1–152509-3 (2008)CrossRef Mitani, S., Nogi, Y., Wang, H., Yakushiji, K., Ernult, F., Takanashi, K.: Current-induced tunnel magnetoresistance due to spin accumulation in Au nanoparticles. Appl. Phys. Lett 92, 152509-1–152509-3 (2008)CrossRef
10.
Zurück zum Zitat Chen, C.D., Yao, Y.D., Lee, S.F., Shyu, J.H.: Magnetoresistance study in Co–Al–Co and Al–Co–Al double tunneling junctions. J. Appl. Phys. 91, 7469–7471 (2002)CrossRef Chen, C.D., Yao, Y.D., Lee, S.F., Shyu, J.H.: Magnetoresistance study in Co–Al–Co and Al–Co–Al double tunneling junctions. J. Appl. Phys. 91, 7469–7471 (2002)CrossRef
11.
Zurück zum Zitat Ono, K., Shimada, H., Ootuka, Y.: Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor. J. Phys. Soc. Jpn. 66, 1261–1264 (1997)CrossRef Ono, K., Shimada, H., Ootuka, Y.: Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor. J. Phys. Soc. Jpn. 66, 1261–1264 (1997)CrossRef
12.
Zurück zum Zitat Shyu, J.H., Yao, Y.D., Chen, C.D., Lee, S.F.: Magnetoresistance study in NiFe–Al–NiFe single-electron tunneling devices. J. Appl. Phys. 93, 8421–8423 (2003)CrossRef Shyu, J.H., Yao, Y.D., Chen, C.D., Lee, S.F.: Magnetoresistance study in NiFe–Al–NiFe single-electron tunneling devices. J. Appl. Phys. 93, 8421–8423 (2003)CrossRef
13.
Zurück zum Zitat Korotkov, A.N., Safarov, V.I.: Nonequilibrium spin distribution in a single-electron transistor. Phys. Rev. B 59, 89–92 (1999)CrossRef Korotkov, A.N., Safarov, V.I.: Nonequilibrium spin distribution in a single-electron transistor. Phys. Rev. B 59, 89–92 (1999)CrossRef
14.
Zurück zum Zitat Barnas, J., Weymann, I.: Spin effects in single-electron tunneling. J. Phys. Condens. Matter 20, 423202-1–423202-36 (2008)CrossRef Barnas, J., Weymann, I.: Spin effects in single-electron tunneling. J. Phys. Condens. Matter 20, 423202-1–423202-36 (2008)CrossRef
15.
Zurück zum Zitat Lindebaum, S., Konig, J.: Theory of transport through noncollinear single-electron spin-valve transistors. Phys. Rev. B 84, 235409-1–235409-10 (2011)CrossRef Lindebaum, S., Konig, J.: Theory of transport through noncollinear single-electron spin-valve transistors. Phys. Rev. B 84, 235409-1–235409-10 (2011)CrossRef
16.
Zurück zum Zitat Barnas, J., Fert, A.: Interplay of spin accumulation and Coulomb blockade in double ferromagnetic junctions. J. Magn. Magn. Mater. 192, L391–L395 (1999)CrossRef Barnas, J., Fert, A.: Interplay of spin accumulation and Coulomb blockade in double ferromagnetic junctions. J. Magn. Magn. Mater. 192, L391–L395 (1999)CrossRef
17.
Zurück zum Zitat Barnas, J., Martinek, J., Michalek, G., Bulka, B.R.: Spin effects in ferromagnetic single-electron transistors. Phys. Rev. B 62, 12363–12373 (2000)CrossRef Barnas, J., Martinek, J., Michalek, G., Bulka, B.R.: Spin effects in ferromagnetic single-electron transistors. Phys. Rev. B 62, 12363–12373 (2000)CrossRef
18.
Zurück zum Zitat Weymann, I., Barnas, J.: Transport characteristics of ferromagnetic single-electron transistors. Phys. Status Solidi (b) 236, 651–660 (2003)CrossRef Weymann, I., Barnas, J.: Transport characteristics of ferromagnetic single-electron transistors. Phys. Status Solidi (b) 236, 651–660 (2003)CrossRef
19.
Zurück zum Zitat Jalil, M.B.A., Tan, S.G., Ma, M.J.: Enhanced magneto-Coulomb effect in asymmetric ferromagnetic single electron transistors. J. Appl. Phys. 105, 07C905-1–07C905-3 (2009) Jalil, M.B.A., Tan, S.G., Ma, M.J.: Enhanced magneto-Coulomb effect in asymmetric ferromagnetic single electron transistors. J. Appl. Phys. 105, 07C905-1–07C905-3 (2009)
20.
Zurück zum Zitat Kuo, W., Chen, C.D.: Gate-controlled spin polarized current in ferromagnetic single electron transistors. Phys. Rev. B 65, 1041427-1–1041427-5 (2002)CrossRef Kuo, W., Chen, C.D.: Gate-controlled spin polarized current in ferromagnetic single electron transistors. Phys. Rev. B 65, 1041427-1–1041427-5 (2002)CrossRef
21.
Zurück zum Zitat Hai, P.N., Sugahara, S., Tanaka, M.: Reconfigurable logic gates using single-electron spin transistors. Jpn. J. Appl. Phys. 46, 6579–6585 (2007)CrossRef Hai, P.N., Sugahara, S., Tanaka, M.: Reconfigurable logic gates using single-electron spin transistors. Jpn. J. Appl. Phys. 46, 6579–6585 (2007)CrossRef
22.
Zurück zum Zitat Johansson, J.: Spin transport in ferromagnetic/normal-metal tunnel junction arrays. Phys. Rev. B 85, 094421-1–094421-5 (2012)CrossRef Johansson, J.: Spin transport in ferromagnetic/normal-metal tunnel junction arrays. Phys. Rev. B 85, 094421-1–094421-5 (2012)CrossRef
23.
Zurück zum Zitat Bratas, A., Wang, X.H.: Linear response conductance and magneto-resistance of ferromagnetic single-electron transistors. Phys. Rev. B 64, 104434-1–104434-10 (2001)CrossRef Bratas, A., Wang, X.H.: Linear response conductance and magneto-resistance of ferromagnetic single-electron transistors. Phys. Rev. B 64, 104434-1–104434-10 (2001)CrossRef
24.
Zurück zum Zitat Wang, X.H., Bratas, A.: Large magnetoresistance ratio in ferromagnetic single-electron transistors in the strong tunneling regime. Phys. Rev. Lett. 83, 5138–5141 (1999)CrossRef Wang, X.H., Bratas, A.: Large magnetoresistance ratio in ferromagnetic single-electron transistors in the strong tunneling regime. Phys. Rev. Lett. 83, 5138–5141 (1999)CrossRef
25.
Zurück zum Zitat Temple, R.C., Marrows, C.H.: Single-electron spin interplay for characterization of magnetic double tunnel junctions. Phys. Rev. B 88, 184415-1–184415-6 (2013)CrossRef Temple, R.C., Marrows, C.H.: Single-electron spin interplay for characterization of magnetic double tunnel junctions. Phys. Rev. B 88, 184415-1–184415-6 (2013)CrossRef
26.
Zurück zum Zitat Jamshidnezhad, K., Sharifi, M.J.: Physics-based analytical model for ferromagnetic single electron transistor. J. Appl. Phys. 121, 113905-1–113905-11 (2017)CrossRef Jamshidnezhad, K., Sharifi, M.J.: Physics-based analytical model for ferromagnetic single electron transistor. J. Appl. Phys. 121, 113905-1–113905-11 (2017)CrossRef
27.
Zurück zum Zitat Ghosh, A., Jain, A., Singh, N.B., Sarkar, S.K.: A modified macro model approach for SPICE based simulation of single electron transistor. J. Comput. Electron. 15, 400–406 (2016)CrossRef Ghosh, A., Jain, A., Singh, N.B., Sarkar, S.K.: A modified macro model approach for SPICE based simulation of single electron transistor. J. Comput. Electron. 15, 400–406 (2016)CrossRef
28.
Zurück zum Zitat Elabd, A.A., El-Rabaie, E.S.M., Shalaby, A.T.: Analysis of rare events effect on single-electronics simulation based on orthodox theory. J. Comput. Electron. 14, 604–610 (2015)CrossRef Elabd, A.A., El-Rabaie, E.S.M., Shalaby, A.T.: Analysis of rare events effect on single-electronics simulation based on orthodox theory. J. Comput. Electron. 14, 604–610 (2015)CrossRef
29.
Zurück zum Zitat Moodera, J.S., Kinder, L.R.: Ferromagnetic–insulator–ferromagnetic tunneling: spin-dependent tunneling and large magnetoresistance in trilayer junctions (invited). J. Appl. Phys. 79, 4724–4729 (1996)CrossRef Moodera, J.S., Kinder, L.R.: Ferromagnetic–insulator–ferromagnetic tunneling: spin-dependent tunneling and large magnetoresistance in trilayer junctions (invited). J. Appl. Phys. 79, 4724–4729 (1996)CrossRef
30.
Zurück zum Zitat Wasshuber, C., Kosina, H., Selberherr, S.: A simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16, 937–944 (1997)CrossRef Wasshuber, C., Kosina, H., Selberherr, S.: A simulator for single-electron tunnel devices and circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16, 937–944 (1997)CrossRef
Metadaten
Titel
Time-dependent equivalent circuit modeling of ferromagnetic single electron transistors
verfasst von
Kasra Jamshidnezhad
Mohammad Javad Sharifi
Publikationsdatum
03.01.2019
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-01293-0

Weitere Artikel der Ausgabe 2/2019

Journal of Computational Electronics 2/2019 Zur Ausgabe

Neuer Inhalt