Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2021

12.05.2021 | ORIGINAL ARTICLE

Time-dependent springback prediction with stress relaxation effect for non-isothermal hot stamping of titanium alloy sheets

verfasst von: Yuan Chen, Guofeng Han, Shuhui Li, Yongfeng Li, Zhiqiang Li, Zhongqin Lin

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hot stamping of titanium alloy sheets is a non-isothermal forming process due to the interfacial heat transfer while hot blank is formed and cooled in cold forming tools. Due to the condition of high temperature, the material experiences a thermal-mechanical coupled deformation and a time-dependent stress relaxation subsequently. The control on shape accuracy of hot-stamped titanium alloy parts is of great challenge owing to the complicated stress evolution mechanism. The accurate prediction of springback requires a comprehensive description on the temperature and strain rate sensitive deformation, and also on the stress relaxation during die quenching. The precise testing methods and constitutive models are crucial for accurate simulation. In this work, tensile tests with different temperature and strain rates, and stress relaxation tests with different temperature and initial stress levels are performed in Gleeble system. An integrated physically based constitutive model is developed to describe both the thermo-mechanical behavior and time-dependent stress relaxation in hot stamping process. Furthermore, the proposed model is implemented in the hot stamping simulations of U-shape part through user subroutines. The essential effect of stress relaxation on stress evolutions of U-shape part is analyzed. The simulation results show promising agreement with experiments when stress relaxation is taken into account. Finally, based on the principle of increasing temperature to enhance stress relaxation, increasing the forming speed is found to be an effective way to reduce the springback of titanium alloy in hot stamping.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zamzuri H, Ken-Ichiro M, Tomoyoshi M, Yuya Y (2013) Hot stamping of titanium alloy sheet using resistance heating. NMSTU 5:12–15 Zamzuri H, Ken-Ichiro M, Tomoyoshi M, Yuya Y (2013) Hot stamping of titanium alloy sheet using resistance heating. NMSTU 5:12–15
2.
Zurück zum Zitat Kopec M, Wang K, Politis DJ, Wang Y, Wang L, Lin J (2018) Formability and microstructure evolution mechanisms of ti6al4v alloy during a novel hot stamping process. Materials Science and Engineering: A 719:72–81CrossRef Kopec M, Wang K, Politis DJ, Wang Y, Wang L, Lin J (2018) Formability and microstructure evolution mechanisms of ti6al4v alloy during a novel hot stamping process. Materials Science and Engineering: A 719:72–81CrossRef
3.
Zurück zum Zitat Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210 (15):2103–2118CrossRef Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210 (15):2103–2118CrossRef
4.
Zurück zum Zitat Khan AS, Yu S (2012) Deformation induced anisotropic responses of Ti–6al–4V alloy. Part I: experiments. Int J Plast 38:1–13CrossRef Khan AS, Yu S (2012) Deformation induced anisotropic responses of Ti–6al–4V alloy. Part I: experiments. Int J Plast 38:1–13CrossRef
5.
Zurück zum Zitat Khan AS, Yu S, Liu H (2012) Deformation induced anisotropic responses of Ti–6Al–4V alloy part II: a strain rate and temperature dependent anisotropic yield criterion. Int J Plast 38:14–26CrossRef Khan AS, Yu S, Liu H (2012) Deformation induced anisotropic responses of Ti–6Al–4V alloy part II: a strain rate and temperature dependent anisotropic yield criterion. Int J Plast 38:14–26CrossRef
6.
Zurück zum Zitat Zhang J, Wang Y, Zan X, Wang Y (2015) The constitutive responses of Ti-6.6 Al-3.3 Mo-1.8 Zr-0.29 Si alloy at high strain rates and elevated temperatures. J Alloys Compd 647:97– 104CrossRef Zhang J, Wang Y, Zan X, Wang Y (2015) The constitutive responses of Ti-6.6 Al-3.3 Mo-1.8 Zr-0.29 Si alloy at high strain rates and elevated temperatures. J Alloys Compd 647:97– 104CrossRef
7.
Zurück zum Zitat Yang L, Wang B, Liu G, Zhao H, Zhou J (2015) Hot tensile behavior and self-consistent constitutive modeling of TA15 titanium alloy sheets. J Mater Eng Perform 24(12):4647–4655CrossRef Yang L, Wang B, Liu G, Zhao H, Zhou J (2015) Hot tensile behavior and self-consistent constitutive modeling of TA15 titanium alloy sheets. J Mater Eng Perform 24(12):4647–4655CrossRef
8.
Zurück zum Zitat Fan X, Yang H (2011) Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution. Int J Plast 27(11):1833–1852CrossRef Fan X, Yang H (2011) Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution. Int J Plast 27(11):1833–1852CrossRef
9.
Zurück zum Zitat Babu B, Lindgren LE (2013) Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Int J Plast 50:94–108CrossRef Babu B, Lindgren LE (2013) Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Int J Plast 50:94–108CrossRef
10.
Zurück zum Zitat Lindgren LE, Domkin K, Hansson S (2008) Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L. Mech Mater 40(11):907–919CrossRef Lindgren LE, Domkin K, Hansson S (2008) Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L. Mech Mater 40(11):907–919CrossRef
11.
Zurück zum Zitat Wang K, Liu G, Zhao J, Huang K, Wang L (2018) Experimental and modelling study of an approach to enhance gas bulging formability of TA15 titanium alloy tube based on dynamic recrystallization. J Mater Process Technol 259:387–396CrossRef Wang K, Liu G, Zhao J, Huang K, Wang L (2018) Experimental and modelling study of an approach to enhance gas bulging formability of TA15 titanium alloy tube based on dynamic recrystallization. J Mater Process Technol 259:387–396CrossRef
12.
Zurück zum Zitat Lin J, Dean T (2005) Modelling of microstructure evolution in hot forming using unified constitutive equations. J Mater Process Technol 167(2-3):354–362CrossRef Lin J, Dean T (2005) Modelling of microstructure evolution in hot forming using unified constitutive equations. J Mater Process Technol 167(2-3):354–362CrossRef
13.
Zurück zum Zitat Zong Y, Liu P, Guo B, Shan D (2015) Springback evaluation in hot v-bending of Ti-6Al-4V alloy sheets. The International Journal of Advanced Manufacturing Technology 76(1-4):577–585CrossRef Zong Y, Liu P, Guo B, Shan D (2015) Springback evaluation in hot v-bending of Ti-6Al-4V alloy sheets. The International Journal of Advanced Manufacturing Technology 76(1-4):577–585CrossRef
14.
Zurück zum Zitat Zong Y, Liu P, Guo B, Shan D (2015) Investigation on high temperature short-term creep and stress relaxation of titanium alloy. Materials Science and Engineering: A 620:172–180CrossRef Zong Y, Liu P, Guo B, Shan D (2015) Investigation on high temperature short-term creep and stress relaxation of titanium alloy. Materials Science and Engineering: A 620:172–180CrossRef
15.
Zurück zum Zitat Liu P, Zong Y, Shan D, Guo B (2015) Relationship between constant-load creep, decreasing-load creep and stress relaxation of titanium alloy. Materials Science and Engineering: A 638:106–113CrossRef Liu P, Zong Y, Shan D, Guo B (2015) Relationship between constant-load creep, decreasing-load creep and stress relaxation of titanium alloy. Materials Science and Engineering: A 638:106–113CrossRef
16.
Zurück zum Zitat Guo J, Li F, Zheng X, Shi H, Meng W (2016) An accelerated method for creep prediction from short term stress relaxation tests. J Press Vessel Technol 138(3) Guo J, Li F, Zheng X, Shi H, Meng W (2016) An accelerated method for creep prediction from short term stress relaxation tests. J Press Vessel Technol 138(3)
17.
Zurück zum Zitat Cui X, Wu X, Wan M, Ma B, Zhang Y (2019) A novel constitutive model for stress relaxation of Ti-6Al-4V alloy sheet. International Journal of Mechanical Sciences 161:105,034CrossRef Cui X, Wu X, Wan M, Ma B, Zhang Y (2019) A novel constitutive model for stress relaxation of Ti-6Al-4V alloy sheet. International Journal of Mechanical Sciences 161:105,034CrossRef
18.
Zurück zum Zitat Luo J, Xiong W, Li X, Chen J (2019) Investigation on high-temperature stress relaxation behavior of Ti-6Al-4V sheet. Materials Science and Engineering: A 743:755–763CrossRef Luo J, Xiong W, Li X, Chen J (2019) Investigation on high-temperature stress relaxation behavior of Ti-6Al-4V sheet. Materials Science and Engineering: A 743:755–763CrossRef
19.
Zurück zum Zitat Odenberger EL, Pederson R, Oldenburg M (2019) Finite element modeling and validation of springback and stress relaxation in the thermo-mechanical forming of thin Ti-6Al-4V sheets. The International Journal of Advanced Manufacturing Technology 104(9-12):3439–3455CrossRef Odenberger EL, Pederson R, Oldenburg M (2019) Finite element modeling and validation of springback and stress relaxation in the thermo-mechanical forming of thin Ti-6Al-4V sheets. The International Journal of Advanced Manufacturing Technology 104(9-12):3439–3455CrossRef
20.
Zurück zum Zitat Li N, Shao ZT, Lin JG, Dean TA (2016) Investigation of uniaxial tensile properties of AA6082 under HFQ®; conditions. In: Key engineering materials, trans tech publ, vol 716, pp 337–344 Li N, Shao ZT, Lin JG, Dean TA (2016) Investigation of uniaxial tensile properties of AA6082 under HFQ®; conditions. In: Key engineering materials, trans tech publ, vol 716, pp 337–344
21.
Zurück zum Zitat Li Y, Li S, Chen Y, Han G (2019) Constitutive parameters identification based on DIC assisted thermo-mechanical tensile test for hot stamping of boron steel. J Mater Process Technol 271:429–443CrossRef Li Y, Li S, Chen Y, Han G (2019) Constitutive parameters identification based on DIC assisted thermo-mechanical tensile test for hot stamping of boron steel. J Mater Process Technol 271:429–443CrossRef
22.
Zurück zum Zitat Lütjering G, Williams JC (2007) Titanium, 2nd edn. Springer Science & Business Media, Berlin Lütjering G, Williams JC (2007) Titanium, 2nd edn. Springer Science & Business Media, Berlin
23.
Zurück zum Zitat Seeger A (1956) The mechanism of glide and work-hardening in fcc and hcp metal. dislocations and mechanical properties of crystal. Wiley, Lake Placid, pp 243–329 Seeger A (1956) The mechanism of glide and work-hardening in fcc and hcp metal. dislocations and mechanical properties of crystal. Wiley, Lake Placid, pp 243–329
24.
Zurück zum Zitat Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press
25.
Zurück zum Zitat Picu R, Majorell A (2002) Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—part II: constitutive modeling. Materials Science and Engineering: A 326(2):306–316CrossRef Picu R, Majorell A (2002) Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—part II: constitutive modeling. Materials Science and Engineering: A 326(2):306–316CrossRef
26.
Zurück zum Zitat Kocks U, Mecking H (2003) Physics and phenomenology of strain hardening: the fcc case. Progress in Materials Science 48(3):171–273CrossRef Kocks U, Mecking H (2003) Physics and phenomenology of strain hardening: the fcc case. Progress in Materials Science 48(3):171–273CrossRef
27.
Zurück zum Zitat Wood W (1967) Experimental mechanics at velocity extremes—very high strain rates. Exp Mech 7(10):441–446CrossRef Wood W (1967) Experimental mechanics at velocity extremes—very high strain rates. Exp Mech 7(10):441–446CrossRef
28.
Zurück zum Zitat Rusinek A, Zaera R, Klepaczko JR, Cheriguene R (2005) Analysis of inertia and scale effects on dynamic neck formation during tension of sheet steel. Acta Mater 53(20):5387–5400 Rusinek A, Zaera R, Klepaczko JR, Cheriguene R (2005) Analysis of inertia and scale effects on dynamic neck formation during tension of sheet steel. Acta Mater 53(20):5387–5400
29.
Zurück zum Zitat Li Y, Li S, He J, Chen Y, Yue L (2019) Identification methods on blank-die interfacial heat transfer coefficient in press hardening. Applied Thermal Engineering 152:865–877CrossRef Li Y, Li S, He J, Chen Y, Yue L (2019) Identification methods on blank-die interfacial heat transfer coefficient in press hardening. Applied Thermal Engineering 152:865–877CrossRef
30.
Zurück zum Zitat Gontarz A, Dziubińska A, Okoń Ł (2011) Determination of friction coefficients at elevated temperatures for some Al, Mg and Ti alloys. Archives of Metallurgy and Materials Gontarz A, Dziubińska A, Okoń Ł (2011) Determination of friction coefficients at elevated temperatures for some Al, Mg and Ti alloys. Archives of Metallurgy and Materials
Metadaten
Titel
Time-dependent springback prediction with stress relaxation effect for non-isothermal hot stamping of titanium alloy sheets
verfasst von
Yuan Chen
Guofeng Han
Shuhui Li
Yongfeng Li
Zhiqiang Li
Zhongqin Lin
Publikationsdatum
12.05.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07055-w

Weitere Artikel der Ausgabe 1-2/2021

The International Journal of Advanced Manufacturing Technology 1-2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.