Skip to main content

2022 | OriginalPaper | Buchkapitel

Time-Difference Electrical Impedance Tomography with a Blood Flow Model as Prior Information for Stroke Monitoring

verfasst von : R. G. Beraldo, F. S. Moura

Erschienen in: XXVII Brazilian Congress on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Continuous monitoring of brain hemodynamics is important to quickly detect changes in healthy cerebral blood flow, helping physician decision-making in the treatment of the patient. Resistivity changes in the brain happen as a result of the pulsatile characteristic of the blood in the arteries or pathological conditions such as ischemia. We developed a dynamic model of cerebral circulation capable of portraying variations in resistivities in arteries within a cardiac cycle. From the hypothesis that the resistivity changes in the brain can be detected by Electrical Impedance Tomography (EIT), we included this model as prior information in time-difference image reconstruction algorithm. With this prior information, image reconstruction of the brain with pre-existing ischemia was possible, showing that EIT is a potential technique for brain hemodynamic monitoring.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Puig B, Brenna S, Magnus T (2018) Molecular communication of a dying neuron in stroke. Int J Mol Sci 19:2834CrossRef Puig B, Brenna S, Magnus T (2018) Molecular communication of a dying neuron in stroke. Int J Mol Sci 19:2834CrossRef
[2]
Zurück zum Zitat Bor-Seng-Shu E, Kita WS, Figueiredo EG et al (2011) Cerebral hemodynamics: concepts of clinical importance. Arq Neuro-Psiquiatr 70:352–356 Bor-Seng-Shu E, Kita WS, Figueiredo EG et al (2011) Cerebral hemodynamics: concepts of clinical importance. Arq Neuro-Psiquiatr 70:352–356
[3]
Zurück zum Zitat Holder DS (2005) Electrical impedance tomography: methods, history and applications, 1st edn. IOP Publishing Ltd, Cornwall, UK Holder DS (2005) Electrical impedance tomography: methods, history and applications, 1st edn. IOP Publishing Ltd, Cornwall, UK
[4]
Zurück zum Zitat Proença M (2017) Non-invasive hemodynamic monitoring by electrical impedance tomography. PhD thesis, École Polytechnique Fédérale de Lausanne Proença M (2017) Non-invasive hemodynamic monitoring by electrical impedance tomography. PhD thesis, École Polytechnique Fédérale de Lausanne
[5]
Zurück zum Zitat Hammond D, Price N, Turovets S (2017) Construction and segmentation of pediatric head tissue atlases for electrical head modeling OHBM. Vancouver, Canada Hammond D, Price N, Turovets S (2017) Construction and segmentation of pediatric head tissue atlases for electrical head modeling OHBM. Vancouver, Canada
[6]
Zurück zum Zitat Gonzalez R, Woods R (2008) Digital image processing, 3rd edn. Pearson Prentice Hall, Londres Gonzalez R, Woods R (2008) Digital image processing, 3rd edn. Pearson Prentice Hall, Londres
[7]
Zurück zum Zitat Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79:1309–1331CrossRef Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79:1309–1331CrossRef
[8]
Zurück zum Zitat Kaipio J, Somersalo E (2005) Statistical and computational inverse problems, 1st edn. Springer, New YorkMATH Kaipio J, Somersalo E (2005) Statistical and computational inverse problems, 1st edn. Springer, New YorkMATH
[9]
Zurück zum Zitat Bullitt E, Zeng D, Gerig G et al (2005) Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol 12:1232–1240CrossRef Bullitt E, Zeng D, Gerig G et al (2005) Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol 12:1232–1240CrossRef
[10]
Zurück zum Zitat Melis A (2017) Gaussian process emulators for 1D vascular models. PhD thesis, The Department of Mechanical Engineering—The University of Sheffield Melis A (2017) Gaussian process emulators for 1D vascular models. PhD thesis, The Department of Mechanical Engineering—The University of Sheffield
[11]
Zurück zum Zitat Alastruey J, Parker KH, Peiró J et al (2007) Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40:1794–1805CrossRef Alastruey J, Parker KH, Peiró J et al (2007) Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40:1794–1805CrossRef
[12]
Zurück zum Zitat Visser KR (1989) Electric properties of flowing blood and impedance cardiography. Ann Biomed Eng 17:463–473CrossRef Visser KR (1989) Electric properties of flowing blood and impedance cardiography. Ann Biomed Eng 17:463–473CrossRef
[13]
Zurück zum Zitat Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRef Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293CrossRef
[14]
Zurück zum Zitat Andreuccetti D, Fossi R, Petrucci C (1997) An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz. Based on data published by Gabriel C et al. in 1996 Andreuccetti D, Fossi R, Petrucci C (1997) An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz. Based on data published by Gabriel C et al. in 1996
[15]
Zurück zum Zitat Fernandez-Corazza M, Ellenrieder N, Muravchik CH (2011) Estimation of electrical conductivity of a layered spherical head model using electrical impedance tomography. J Phys: Conf Ser 332:012022 Fernandez-Corazza M, Ellenrieder N, Muravchik CH (2011) Estimation of electrical conductivity of a layered spherical head model using electrical impedance tomography. J Phys: Conf Ser 332:012022
[16]
Zurück zum Zitat Horesh L (2006) Some novel approaches in modelling and image reconstruction for multi-frequency electrical impedance tomography of the human brain. PhD thesis, Department of Medical Physics—University College London Horesh L (2006) Some novel approaches in modelling and image reconstruction for multi-frequency electrical impedance tomography of the human brain. PhD thesis, Department of Medical Physics—University College London
[17]
Zurück zum Zitat Cheng KS, Isaacson D, Newell JC et al (1989) Electrode models for electric current computed tomography. IEEE Trans Biomed Eng 36:918–924CrossRef Cheng KS, Isaacson D, Newell JC et al (1989) Electrode models for electric current computed tomography. IEEE Trans Biomed Eng 36:918–924CrossRef
[18]
Zurück zum Zitat Silva OL, Lima RG, Martins TC et al (2017) Influence of current injection pattern and electric potential measurement strategies in electrical impedance tomography. Control Eng Pract 58:276–286CrossRef Silva OL, Lima RG, Martins TC et al (2017) Influence of current injection pattern and electric potential measurement strategies in electrical impedance tomography. Control Eng Pract 58:276–286CrossRef
[19]
Zurück zum Zitat Beraldo RG (2019) Desenvolvimento de um modelo dinâmico da circulação cerebral para tomografia por impedância elétrica. Master’s thesis, Universidade Federal do ABC Beraldo RG (2019) Desenvolvimento de um modelo dinâmico da circulação cerebral para tomografia por impedância elétrica. Master’s thesis, Universidade Federal do ABC
[20]
Zurück zum Zitat Vauhkonen P (2004) Image reconstruction in three-dimensional electrical impedance tomography. PhD thesis, University of Kuopio Vauhkonen P (2004) Image reconstruction in three-dimensional electrical impedance tomography. PhD thesis, University of Kuopio
[21]
Zurück zum Zitat Findlay JM, Nisar J, Darsaut T (2016) Cerebral vasospasm: a review. Can J Neurol Sci 43:15–32CrossRef Findlay JM, Nisar J, Darsaut T (2016) Cerebral vasospasm: a review. Can J Neurol Sci 43:15–32CrossRef
[22]
Zurück zum Zitat Romsarueva A, McEwan A, Horesh L et al (2006) MFEIT of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 27:S147CrossRef Romsarueva A, McEwan A, Horesh L et al (2006) MFEIT of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 27:S147CrossRef
Metadaten
Titel
Time-Difference Electrical Impedance Tomography with a Blood Flow Model as Prior Information for Stroke Monitoring
verfasst von
R. G. Beraldo
F. S. Moura
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70601-2_266

Neuer Inhalt