Skip to main content
Erschienen in: Engineering with Computers 4/2021

21.02.2020 | Original Article

Topology optimization of an offshore jacket structure considering aerodynamic, hydrodynamic and structural forces

verfasst von: Vimal Savsani, Parth Dave, Bansi D. Raja, Vivek Patel

Erschienen in: Engineering with Computers | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work focused on the optimization of offshore wind turbine structure which can sustain different environmental conditions and is of the least cost. Size and topology optimization is carried out for the jacket structure from the National Renewable Energy Laboratory (NREL) [used in the Offshore Code Comparison Collaboration Continuation (OC4) project] by using teaching learning-based optimization (TLBO) algorithm and genetic algorithm (GA). The optimization process is carried out in Matlab along with the time-dependent dynamic wind turbine simulation with the aerodynamic, hydrodynamic and structural forces in the fatigue, aerodynamics, structures, and turbulence code (FAST) from NREL. This is an innovative process which can be used to substitute the time-consuming construction of a wind turbine for its analysis. In this work, both static and dynamic analyses are carried out for simultaneous size and topology optimization. The forces applied to the structure are realistic in nature and fatigue analysis is carried out to ensure that the structure does not fail during its design life. This ensures that the simulation is more accurate and realistic as compared with other analysis. The results showed that the TLBO algorithm is effective compared to GA in terms of size and topology optimization. Further, the other state-of-the art algorithms from the Congress on Evolutionary Computation (CEC) such as differential evolution, LSHADE, multi-operator EA-II, effective butterfly optimizer, and unified differential evolution are also implemented and the comparative results of all the algorithms are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nelson V (2013) Wind energy: renewable energy and the environment. CRC Press, Boca RatonCrossRef Nelson V (2013) Wind energy: renewable energy and the environment. CRC Press, Boca RatonCrossRef
3.
Zurück zum Zitat Martens JH (2014) Topology optimization of a jacket for an offshore wind turbine: by utilization of genetic algorithm (Master's thesis, Institutt for bygg, anlegg og transport) Martens JH (2014) Topology optimization of a jacket for an offshore wind turbine: by utilization of genetic algorithm (Master's thesis, Institutt for bygg, anlegg og transport)
4.
Zurück zum Zitat Kolios A, Collu M, Chahardehi A, Brennan FP, Patel MH (2010) A multi- criteria decision making method to compare support structures for offshore wind turbines. In: Offshore, Process & Engineering Department, School of Engineering, Cranfield University, Bedforshire, European Wind Energy Conference and Exhibition (EWEC) Kolios A, Collu M, Chahardehi A, Brennan FP, Patel MH (2010) A multi- criteria decision making method to compare support structures for offshore wind turbines. In: Offshore, Process & Engineering Department, School of Engineering, Cranfield University, Bedforshire, European Wind Energy Conference and Exhibition (EWEC)
5.
Zurück zum Zitat Sullivan RG, Kirchler LB, Cothren J, Winters SL (2013) Offshore wind turbine visibility and visual impact threshold distances. Environ Pract 15(1):33–49CrossRef Sullivan RG, Kirchler LB, Cothren J, Winters SL (2013) Offshore wind turbine visibility and visual impact threshold distances. Environ Pract 15(1):33–49CrossRef
6.
Zurück zum Zitat Chew KH, Tai K, Ng EYK, Muskulus M (2016) Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads. Mar Struct 47:23–41CrossRef Chew KH, Tai K, Ng EYK, Muskulus M (2016) Analytical gradient-based optimization of offshore wind turbine substructures under fatigue and extreme loads. Mar Struct 47:23–41CrossRef
7.
Zurück zum Zitat Mohammadi SF, Galgoul NS, Starossek U, Videiro PM (2016) An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure. Mar Struct 49:97–115CrossRef Mohammadi SF, Galgoul NS, Starossek U, Videiro PM (2016) An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure. Mar Struct 49:97–115CrossRef
8.
Zurück zum Zitat Oest J, Overgaard LCT, Lund E (2015) Gradient based structural optimization with fatigue constraints of jacket structures for offshore wind turbines. In: 11th World Congress on Structural and Multidisciplinary Optimization Oest J, Overgaard LCT, Lund E (2015) Gradient based structural optimization with fatigue constraints of jacket structures for offshore wind turbines. In: 11th World Congress on Structural and Multidisciplinary Optimization
9.
Zurück zum Zitat Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Laboratory (NREL), Golden, CO Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Laboratory (NREL), Golden, CO
10.
Zurück zum Zitat AlHamaydeh M, Barakat S, Nasif O (2017) Optimization of support structures for offshore wind turbines using genetic algorithm with domain-trimming. Math Problems Eng 2017(2):1–14CrossRef AlHamaydeh M, Barakat S, Nasif O (2017) Optimization of support structures for offshore wind turbines using genetic algorithm with domain-trimming. Math Problems Eng 2017(2):1–14CrossRef
11.
Zurück zum Zitat Häafele J, Rolfes R (2016) Approaching the ideal design of jacket substructures for offshore wind turbines with a Particle Swarm Optimization algorithm. In: The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers Häafele J, Rolfes R (2016) Approaching the ideal design of jacket substructures for offshore wind turbines with a Particle Swarm Optimization algorithm. In: The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers
12.
Zurück zum Zitat Gentils T, Wang L, Kolios A (2017) Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl Energy 199:187–204CrossRef Gentils T, Wang L, Kolios A (2017) Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl Energy 199:187–204CrossRef
14.
Zurück zum Zitat Oest J, Sørensen R, Overgaard CT, Lund E (2017) Structural optimization with fatigue and ultimate limit constraints of jacket structures for large offshore wind turbines. Struct Multidiscip Optim 55(3):779–793MathSciNetCrossRef Oest J, Sørensen R, Overgaard CT, Lund E (2017) Structural optimization with fatigue and ultimate limit constraints of jacket structures for large offshore wind turbines. Struct Multidiscip Optim 55(3):779–793MathSciNetCrossRef
16.
Zurück zum Zitat Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2018) Truss optimization with natural frequency bounds using improved symbiotic organisms search. Knowl-Based Syst 143:162–178CrossRef Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2018) Truss optimization with natural frequency bounds using improved symbiotic organisms search. Knowl-Based Syst 143:162–178CrossRef
17.
Zurück zum Zitat Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315CrossRef
18.
Zurück zum Zitat Vorpahl F, Popko W, Kaufer D (2011) Description of a basic model of the “UpWind reference jacket” for code comparison in the OC4 project under IEA Wind Annex. Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Bremerhaven. Vorpahl F, Popko W, Kaufer D (2011) Description of a basic model of the “UpWind reference jacket” for code comparison in the OC4 project under IEA Wind Annex. Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), Bremerhaven.
19.
Zurück zum Zitat Manning T, Sleator RD, Walsh P (2013) Naturally selecting solutions: the use of genetic algorithms in bioinformatics. Bioengineered 4(5):266–278CrossRef Manning T, Sleator RD, Walsh P (2013) Naturally selecting solutions: the use of genetic algorithms in bioinformatics. Bioengineered 4(5):266–278CrossRef
20.
Zurück zum Zitat Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471MathSciNetCrossRef Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471MathSciNetCrossRef
21.
Zurück zum Zitat Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl-Based Syst 150:175–197CrossRef Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl-Based Syst 150:175–197CrossRef
22.
Zurück zum Zitat Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRef Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68CrossRef
23.
Zurück zum Zitat Patel VK, Savsani VJ (2015) Heat transfer search (HTS): a novel optimization algorithm. Inf Sci 324:217–246CrossRef Patel VK, Savsani VJ (2015) Heat transfer search (HTS): a novel optimization algorithm. Inf Sci 324:217–246CrossRef
24.
Zurück zum Zitat Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Design Eng 3(1):24–36CrossRef Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Design Eng 3(1):24–36CrossRef
25.
Zurück zum Zitat Jonkman JM, Hayman GJ, Jonkman BJ, Damiani RR (2015) AeroDyn v15 user’s guide and theory manual. NREL Draft Report Jonkman JM, Hayman GJ, Jonkman BJ, Damiani RR (2015) AeroDyn v15 user’s guide and theory manual. NREL Draft Report
26.
Zurück zum Zitat Jonkman JM, Robertson A, Hayman GJ (2014) HydroDyn user’s guide and theory manual. National Renewable Energy Laboratory Jonkman JM, Robertson A, Hayman GJ (2014) HydroDyn user’s guide and theory manual. National Renewable Energy Laboratory
27.
Zurück zum Zitat Veritas DN (2010) Fatigue design of offshore steel structures. No DNV-RP-C 203:30 Veritas DN (2010) Fatigue design of offshore steel structures. No DNV-RP-C 203:30
28.
Zurück zum Zitat Amzallag C, Gerey JP, Robert JL, Bahuaud J (1994) Standardization of the rainflow counting method for fatigue analysis. Int J Fatigue 16(4):287–293CrossRef Amzallag C, Gerey JP, Robert JL, Bahuaud J (1994) Standardization of the rainflow counting method for fatigue analysis. Int J Fatigue 16(4):287–293CrossRef
29.
Zurück zum Zitat Awad N, Ali MZ, Reynolds RG (2015) A differential evolution algorithm with success-based parameter adaptation for CEC2015 learning-based optimization. In: 2015 IEEE congress on evolutionary computation, pp 1098–1105 Awad N, Ali MZ, Reynolds RG (2015) A differential evolution algorithm with success-based parameter adaptation for CEC2015 learning-based optimization. In: 2015 IEEE congress on evolutionary computation, pp 1098–1105
30.
Zurück zum Zitat Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC) 2014, pp 1658–1665 Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC) 2014, pp 1658–1665
31.
Zurück zum Zitat Elsayed SM, Sarker RA, Essam DL, Hamza NM (2014) Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1650–1657 Elsayed SM, Sarker RA, Essam DL, Hamza NM (2014) Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1650–1657
32.
Zurück zum Zitat Kumar A, Misra RK, Singh D (2017) Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In: 2017 IEEE congress on evolutionary computation (CEC), pp 1835–1842 Kumar A, Misra RK, Singh D (2017) Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase. In: 2017 IEEE congress on evolutionary computation (CEC), pp 1835–1842
33.
Zurück zum Zitat Trivedi A, Srinivasan D, Biswas N (2018) An improved unified differential evolution algorithm for constrained optimization problems. In: Proceedings of 2018 IEEE congress on evolutionary computation (CEC), pp 1–10 Trivedi A, Srinivasan D, Biswas N (2018) An improved unified differential evolution algorithm for constrained optimization problems. In: Proceedings of 2018 IEEE congress on evolutionary computation (CEC), pp 1–10
Metadaten
Titel
Topology optimization of an offshore jacket structure considering aerodynamic, hydrodynamic and structural forces
verfasst von
Vimal Savsani
Parth Dave
Bansi D. Raja
Vivek Patel
Publikationsdatum
21.02.2020
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-020-00983-3

Weitere Artikel der Ausgabe 4/2021

Engineering with Computers 4/2021 Zur Ausgabe

Neuer Inhalt