Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2013

01.04.2013 | Research Paper

Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces

verfasst von: Yongbo Deng, Zhenyu Liu, Yihui Wu

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the topology optimization method for the steady and unsteady incompressible Navier–Stokes flows driven by body forces, which typically include the constant force (e.g. the gravity) and the centrifugal and Coriolis forces. In the topology optimization problem, the artificial friction force with design variable interpolated porosity is added into the Navier–Stokes equations as the conventional method, and the physical body forces in the Navier–Stokes equations are penalized using the power-law approach. The topology optimization problem is analyzed by the continuous adjoint method, and solved by the finite element method in conjunction with the gradient based approach. In the numerical examples, the topology optimization of the fluidic channel, mass distribution of the flow and local velocity control are presented for the flows driven by body forces. The numerical results demonstrate that the presented method achieves the topology optimization of the flows driven by body forces robustly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems, Struct Multidisc Optim 35:175–180MathSciNetCrossRef Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale stokes flow problems, Struct Multidisc Optim 35:175–180MathSciNetCrossRef
Zurück zum Zitat Abdelwahed M, Hassine M (2009) Topological optimization method for a geometric control problem in Stokes flow. Appl Numer Math 59:1823–1838MathSciNetMATHCrossRef Abdelwahed M, Hassine M (2009) Topological optimization method for a geometric control problem in Stokes flow. Appl Numer Math 59:1823–1838MathSciNetMATHCrossRef
Zurück zum Zitat Akl W, El-Sabbagh A, Al-Mitani K, Baz A (2008) Topology optimization of a plate coupled with acoustic cavity. Int J Solids Struct 46:2060–2074CrossRef Akl W, El-Sabbagh A, Al-Mitani K, Baz A (2008) Topology optimization of a plate coupled with acoustic cavity. Int J Solids Struct 46:2060–2074CrossRef
Zurück zum Zitat Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetMATHCrossRef Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393MathSciNetMATHCrossRef
Zurück zum Zitat Amstutz S (2006) Topological sensitivity analysis for some nonlinear PDE systems. J Math Pures Appl 85:540–557MathSciNetMATH Amstutz S (2006) Topological sensitivity analysis for some nonlinear PDE systems. J Math Pures Appl 85:540–557MathSciNetMATH
Zurück zum Zitat Andreasen CS, Gersborg AR, Sigmund O (2008) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61:498–513MathSciNetCrossRef Andreasen CS, Gersborg AR, Sigmund O (2008) Topology optimization of microfluidic mixers. Int J Numer Methods Fluids 61:498–513MathSciNetCrossRef
Zurück zum Zitat Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM
Zurück zum Zitat Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Bendsoe MP (2000) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsoe MP (2000) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRef Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224MathSciNetCrossRef
Zurück zum Zitat Bendsoe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654CrossRef Bendsoe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654CrossRef
Zurück zum Zitat Bendsoe MP, Sigmund O (2003) Topology optimization-theory, methods and applications. Springer Bendsoe MP, Sigmund O (2003) Topology optimization-theory, methods and applications. Springer
Zurück zum Zitat Deng Y, Liu Z, Zhang P, Wu Y, Korvink JG (2010) Optimization of no-moving part fluidic resistance microvalves with low Reynolds number. In: Proceedings IEEE international conference on Micro Electro MechanicalSystems (MEMS), pp 67–70 Deng Y, Liu Z, Zhang P, Wu Y, Korvink JG (2010) Optimization of no-moving part fluidic resistance microvalves with low Reynolds number. In: Proceedings IEEE international conference on Micro Electro MechanicalSystems (MEMS), pp 67–70
Zurück zum Zitat Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011a) Topology optimization of unsteady incompressible Navier–Stokes flow. J Comput Phys 230:6688–6708MathSciNetMATHCrossRef Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011a) Topology optimization of unsteady incompressible Navier–Stokes flow. J Comput Phys 230:6688–6708MathSciNetMATHCrossRef
Zurück zum Zitat Deng Y, Wu Y, Xuan M, Korvink JG, Liu Z (2011b) Dynamic optimization of valveless micropump. In: Proceedings IEEE international conference on solid-state sensors, actuators, and microsystems (transducers), pp 442–445 Deng Y, Wu Y, Xuan M, Korvink JG, Liu Z (2011b) Dynamic optimization of valveless micropump. In: Proceedings IEEE international conference on solid-state sensors, actuators, and microsystems (transducers), pp 442–445
Zurück zum Zitat Duan X, Ma Y, Zhang R (2008) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487–499MathSciNetMATHCrossRef Duan X, Ma Y, Zhang R (2008) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222:487–499MathSciNetMATHCrossRef
Zurück zum Zitat Duhring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575CrossRef Duhring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575CrossRef
Zurück zum Zitat Elman HC, Silvester DJ, Wathen AJ (2006) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford Elman HC, Silvester DJ, Wathen AJ (2006) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford
Zurück zum Zitat Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 29:1–12MathSciNetCrossRef Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidisc Optim 29:1–12MathSciNetCrossRef
Zurück zum Zitat Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006a) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31:251–259MathSciNetMATHCrossRef Gersborg-Hansen A, Bendsoe MP, Sigmund O (2006a) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31:251–259MathSciNetMATHCrossRef
Zurück zum Zitat Gersborg-Hansen A, Berggren M, Dammann B (2006b) Topology optimizatiopn of mass distribution problems in Stokes flow. Solid Mech Appl 137:365–374CrossRef Gersborg-Hansen A, Berggren M, Dammann B (2006b) Topology optimizatiopn of mass distribution problems in Stokes flow. Solid Mech Appl 137:365–374CrossRef
Zurück zum Zitat Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65:393–415MATHCrossRef Giles MB, Pierce NA (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65:393–415MATHCrossRef
Zurück zum Zitat Guest JK, Proevost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66:461–484MATHCrossRef Guest JK, Proevost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66:461–484MATHCrossRef
Zurück zum Zitat Guillaume PH, Idris KS (2004) Topological sensitivity and shape optimization for the Stokes equations. SIAM J Control Optim 43:1–31MathSciNetMATHCrossRef Guillaume PH, Idris KS (2004) Topological sensitivity and shape optimization for the Stokes equations. SIAM J Control Optim 43:1–31MathSciNetMATHCrossRef
Zurück zum Zitat Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer
Zurück zum Zitat Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253MathSciNetMATH Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253MathSciNetMATH
Zurück zum Zitat Liu Z, Korvink JG (2008) Adaptive moving mesh level set method for structure optimization. Eng Optim 40:529–558MathSciNetCrossRef Liu Z, Korvink JG (2008) Adaptive moving mesh level set method for structure optimization. Eng Optim 40:529–558MathSciNetCrossRef
Zurück zum Zitat Liu Z, Gao Q, Zhang P, Xuan M, Wu Y (2011b) Topology optimization of fluid channels with flow rate equality constraints. Struct Multidisc Optim 44:31–37MathSciNetCrossRef Liu Z, Gao Q, Zhang P, Xuan M, Wu Y (2011b) Topology optimization of fluid channels with flow rate equality constraints. Struct Multidisc Optim 44:31–37MathSciNetCrossRef
Zurück zum Zitat Maatoug H (2006) Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 5:216–229 Maatoug H (2006) Shape optimization for the Stokes equations using topological sensitivity analysis. ARIMA 5:216–229
Zurück zum Zitat Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Optim 5:64–69CrossRef Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Optim 5:64–69CrossRef
Zurück zum Zitat Mohammadi B, Pironneau O (2010) Applied shape optimization for fluids. Oxford Mohammadi B, Pironneau O (2010) Applied shape optimization for fluids. Oxford
Zurück zum Zitat Nocedal J, Wright SJ (1998) Numerical optimization. Springer Nocedal J, Wright SJ (1998) Numerical optimization. Springer
Zurück zum Zitat Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71:1261–1296MATHCrossRef Nomura T, Sato K, Taguchi K, Kashiwa T, Nishiwaki S (2007) Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique. Int J Numer Methods Eng 71:1261–1296MATHCrossRef
Zurück zum Zitat Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys. Rev. E 75:1–4CrossRef Okkels F, Bruus H (2007) Scaling behavior of optimally structured catalytic microfluidic reactors. Phys. Rev. E 75:1–4CrossRef
Zurück zum Zitat Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65:975–1001MathSciNetMATHCrossRef Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65:975–1001MathSciNetMATHCrossRef
Zurück zum Zitat Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49MathSciNetCrossRef Osher S, Sethian JA (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 78:12–49MathSciNetCrossRef
Zurück zum Zitat Panton RL (1984) Incompressible flow. Wiley Panton RL (1984) Incompressible flow. Wiley
Zurück zum Zitat Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350MathSciNetMATHCrossRef Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350MathSciNetMATHCrossRef
Zurück zum Zitat Rozvany GIN (1994) Shape and layout optimization of structural systems and optimality criteria methods. Springer Rozvany GIN (1994) Shape and layout optimization of structural systems and optimality criteria methods. Springer
Zurück zum Zitat Rozvany GIN (1997) Topology optimization in structural mechanics. Springer Rozvany GIN (1997) Topology optimization in structural mechanics. Springer
Zurück zum Zitat Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90–108CrossRef Rozvany GIN (2001) Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct Multidisc Optim 21:90–108CrossRef
Zurück zum Zitat Saxena A (2005) Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct Multidisc Optim 30:477–490CrossRef Saxena A (2005) Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports. Struct Multidisc Optim 30:477–490CrossRef
Zurück zum Zitat Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:495–526CrossRef Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25:495–526CrossRef
Zurück zum Zitat Sigmund O (2001) A 99-line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127CrossRef Sigmund O (2001) A 99-line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127CrossRef
Zurück zum Zitat Sigmund O, Hougaard KG (2008) Geometric properties of optimal photonic crystals. Phys Rev Lett 100:153904CrossRef Sigmund O, Hougaard KG (2008) Geometric properties of optimal photonic crystals. Phys Rev Lett 100:153904CrossRef
Zurück zum Zitat Sokolowski J, Zochowski A (1999a) On the topological derivative in shape optimization. SIAM J Control Optim 37:1241–1272MathSciNetCrossRef Sokolowski J, Zochowski A (1999a) On the topological derivative in shape optimization. SIAM J Control Optim 37:1241–1272MathSciNetCrossRef
Zurück zum Zitat Srinath DN, Mittal S (2010) An adjoint method for shape optimization in unsteady viscous flows. J Comput Phys 229:1994–2008MathSciNetMATHCrossRef Srinath DN, Mittal S (2010) An adjoint method for shape optimization in unsteady viscous flows. J Comput Phys 229:1994–2008MathSciNetMATHCrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetMATHCrossRef Svanberg K (1987) The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetMATHCrossRef
Zurück zum Zitat Wang MY (2005) Shape optimization with level set method incorporating topological derivatives. In: 6th congresses of structural and multidisciplinary optimization Wang MY (2005) Shape optimization with level set method incorporating topological derivatives. In: 6th congresses of structural and multidisciplinary optimization
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural optimization. Comput Methods Appl Mech Eng 192:227–246MATHCrossRef Wang MY, Wang X, Guo D (2003) A level set method for structural optimization. Comput Methods Appl Mech Eng 192:227–246MATHCrossRef
Zurück zum Zitat Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69:1374–1404MathSciNetMATHCrossRef Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Methods Eng 69:1374–1404MathSciNetMATHCrossRef
Zurück zum Zitat Xing X, Wei P, Wang MY (2010) A finite element-based level set method for structural optimization. Int J Numer Methods Engng 82:805–842MathSciNetMATH Xing X, Wei P, Wang MY (2010) A finite element-based level set method for structural optimization. Int J Numer Methods Engng 82:805–842MathSciNetMATH
Zurück zum Zitat Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195MathSciNetMATHCrossRef Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195MathSciNetMATHCrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224CrossRef
Metadaten
Titel
Topology optimization of steady and unsteady incompressible Navier–Stokes flows driven by body forces
verfasst von
Yongbo Deng
Zhenyu Liu
Yihui Wu
Publikationsdatum
01.04.2013
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2013
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-012-0847-8

Weitere Artikel der Ausgabe 4/2013

Structural and Multidisciplinary Optimization 4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.