Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2020

12.05.2020 | Research Paper

Topology optimization of the hip bone for gait cycle

verfasst von: Kandula Eswara Sai Kumar, Sourav Rakshit

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a topology optimization–based approach towards the optimal design of the human hip bone under mechanical loads during walking. The human hip bone is a complex structure that connects the leg with the torso. It transfers body loads from the upper body to the leg during standing, walking, running, and other daily activities during which it bears nearly two to six times the body weight. This indicates that the evolution of the human hip bone might have been guided by mechanical loads during upright gait which is particular in humans. This motivates us to synthesize an optimal hip structure under loads and constraints of the gait cycle using tools of structural topology optimization. The problem is posed as a compliance minimization problem subject to volume constraint under similar boundary conditions and mechanical loads as the natural hip bone. During a few phases of the gait cycle, the optimal designs from topology optimization achieve good similarity with the natural hip bone. The similarity highly increases under a judicious combination of loading of different phases of the gait cycle. No such prior work exists on the optimal design of the human hip bone as a single entity using topology optimization. The new design may find applications in replacement of hip bone and its parts due to failure under high stresses in different types of injuries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127(3):364–373 Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127(3):364–373
Zurück zum Zitat Arora JS, Haug EJ (1979) Methods of design sensitivity analysis in structural optimization. AIAA J 17 (9):970–974MathSciNet Arora JS, Haug EJ (1979) Methods of design sensitivity analysis in structural optimization. AIAA J 17 (9):970–974MathSciNet
Zurück zum Zitat Bagge M (2000) A model of bone adaptation as an optimization process. J Biomech 33(11):1349–1357 Bagge M (2000) A model of bone adaptation as an optimization process. J Biomech 33(11):1349–1357
Zurück zum Zitat Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATH Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATH
Zurück zum Zitat Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654MATH Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654MATH
Zurück zum Zitat Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications, 2nd ed. Springer Bendsoe MP, Sigmund O (2004) Topology optimization: theory, methods and applications, 2nd ed. Springer
Zurück zum Zitat Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26(8):969–990 Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26(8):969–990
Zurück zum Zitat Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A (2001) Hip contact and gait patterns from routine activities. J Biomech 34:859–871 Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A (2001) Hip contact and gait patterns from routine activities. J Biomech 34:859–871
Zurück zum Zitat Carter DR, Orr TE (1992) Skeletal development and bone functional adaptation. J Bone Miner Res 7(2 S):S389–S395 Carter DR, Orr TE (1992) Skeletal development and bone functional adaptation. J Bone Miner Res 7(2 S):S389–S395
Zurück zum Zitat Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35(2):107–115 Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidiscip Optim 35(2):107–115
Zurück zum Zitat Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling of bone tissue adaptation-a hierarchical approach for bone apparent density and trabecular structure. J Biomech 42 (7):830–837 Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB, Guedes JM (2009) Numerical modeling of bone tissue adaptation-a hierarchical approach for bone apparent density and trabecular structure. J Biomech 42 (7):830–837
Zurück zum Zitat Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6(3):313–326MathSciNetMATH Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6(3):313–326MathSciNetMATH
Zurück zum Zitat Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED 20:313–316 Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. American Society of Mechanical Engineers, Bioengineering Division (Publication) BED 20:313–316
Zurück zum Zitat Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14(11):793–801 Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14(11):793–801
Zurück zum Zitat Dalstra M, Huiskes R (1995) Load transfer across the pelvic bone. J Biomech 28(6):715–724 Dalstra M, Huiskes R (1995) Load transfer across the pelvic bone. J Biomech 28(6):715–724
Zurück zum Zitat Dalstra M, Huiskes R, van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng 117(3):272–8 Dalstra M, Huiskes R, van Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng 117(3):272–8
Zurück zum Zitat Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNet Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNet
Zurück zum Zitat Dostal WF, Andrews JG (1981) A three dimensional biomechanical model of hip musculature. J Biomech 14(11):803–812 Dostal WF, Andrews JG (1981) A three dimensional biomechanical model of hip musculature. J Biomech 14(11):803–812
Zurück zum Zitat Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390 Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–390
Zurück zum Zitat Fernandes P, Rodrigues H, Jacobs C (1999) A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Engin 2(2):125–138 Fernandes P, Rodrigues H, Jacobs C (1999) A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Engin 2(2):125–138
Zurück zum Zitat Fernandes PR, Folgado J, Jacobs C, Pellegrini V (2002) A contact model with ingrowth control for bone remodelling around cementless stems. J Biomech 35(2):167–176 Fernandes PR, Folgado J, Jacobs C, Pellegrini V (2002) A contact model with ingrowth control for bone remodelling around cementless stems. J Biomech 35(2):167–176
Zurück zum Zitat Folgado J, Fernandes PR, Guedes JM, Rodrigues HC (2004) Evaluation of osteoporotic bone quality by a computational model for bone remodeling. Comput Struct 82(17–19):1381–1388 Folgado J, Fernandes PR, Guedes JM, Rodrigues HC (2004) Evaluation of osteoporotic bone quality by a computational model for bone remodeling. Comput Struct 82(17–19):1381–1388
Zurück zum Zitat Fu CL, Bai YC, Lin C, Wang WW (2019) Design optimization of a newly developed aluminum-steel multi-material electric bus body structure. Struct Multidisc Optim 60:2177–2187 Fu CL, Bai YC, Lin C, Wang WW (2019) Design optimization of a newly developed aluminum-steel multi-material electric bus body structure. Struct Multidisc Optim 60:2177–2187
Zurück zum Zitat Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York
Zurück zum Zitat Fyhrie D, Schaffler MB (1995) The adaptation of bone apparant density to applied load. J Biomech 28 (2):135–146 Fyhrie D, Schaffler MB (1995) The adaptation of bone apparant density to applied load. J Biomech 28 (2):135–146
Zurück zum Zitat Ghosh R, Pal B, Ghosh D, Gupta S (2015) Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain. Comput Methods Biomech Biomed Engin 18(7):697–710 Ghosh R, Pal B, Ghosh D, Gupta S (2015) Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain. Comput Methods Biomech Biomed Engin 18(7):697–710
Zurück zum Zitat Goel VK, Svensson NL (1977) Forces on the pelvis. J Biomech 10(3):195–200 Goel VK, Svensson NL (1977) Forces on the pelvis. J Biomech 10(3):195–200
Zurück zum Zitat Goel VK, Valliappan S, Svensson NL (1978) Stresses in the normal pelvis. Comput Biol Med 8(2):91–104 Goel VK, Valliappan S, Svensson NL (1978) Stresses in the normal pelvis. Comput Biol Med 8(2):91–104
Zurück zum Zitat Haq R, Srivastava A, Dhammi I (2014) Classification of pelvic fractures and its clinical relevance. J of Orthoped Traumatol Rehab 7(1):8–13 Haq R, Srivastava A, Dhammi I (2014) Classification of pelvic fractures and its clinical relevance. J of Orthoped Traumatol Rehab 7(1):8–13
Zurück zum Zitat Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodelling: a stability criterion and a time stepping method. Int J Numer Methods Eng 36(5):837–854 Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodelling: a stability criterion and a time stepping method. Int J Numer Methods Eng 36(5):837–854
Zurück zum Zitat Hollister SJ, Kikuchi N, Goldstein SA (1993) Do bone ingrowth processes produce a globally optimized structure? J Biomech 26(4–5):391–407 Hollister SJ, Kikuchi N, Goldstein SA (1993) Do bone ingrowth processes produce a globally optimized structure? J Biomech 26(4–5):391–407
Zurück zum Zitat Hu P, Wu T, Wang HZ, Qi XZ, Yao J, Cheng XD, Chen W, Zhang YZ (2017) Influence of different boundary conditions in finite element analysis on pelvic biomechanical load transmission. Orthop Surg 9 (1):115–122 Hu P, Wu T, Wang HZ, Qi XZ, Yao J, Cheng XD, Chen W, Zhang YZ (2017) Influence of different boundary conditions in finite element analysis on pelvic biomechanical load transmission. Orthop Surg 9 (1):115–122
Zurück zum Zitat Huiskes R, Rulmerman R, Van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706 Huiskes R, Rulmerman R, Van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706
Zurück zum Zitat Iqbal T, Wang L, Li D, Dong E, Fan H, Fu J, Hu C (2019) A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses. Med Eng Phys 69:8–16 Iqbal T, Wang L, Li D, Dong E, Fan H, Fu J, Hu C (2019) A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses. Med Eng Phys 69:8–16
Zurück zum Zitat Lekszycki T (1999) Optimality conditions in modeling of bone adaptation phenomenon. J Theor Appl Mech 37(3):607–624MATH Lekszycki T (1999) Optimality conditions in modeling of bone adaptation phenomenon. J Theor Appl Mech 37(3):607–624MATH
Zurück zum Zitat Lekszycki T (2002) Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 37 (4–s5):343–354MathSciNetMATH Lekszycki T (2002) Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 37 (4–s5):343–354MathSciNetMATH
Zurück zum Zitat Lekszycki T (2005) Functional adaptation of bone as an optimal control problem. J Theor Appl Mech 43 (2005):555–574 Lekszycki T (2005) Functional adaptation of bone as an optimal control problem. J Theor Appl Mech 43 (2005):555–574
Zurück zum Zitat Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229(3):293–309MathSciNetMATH Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229(3):293–309MathSciNetMATH
Zurück zum Zitat Levenston ME, Carter DR (1998) An energy dissipation-based model for damage stimulated bone adaptation. J Biomech 31(7):579–586 Levenston ME, Carter DR (1998) An energy dissipation-based model for damage stimulated bone adaptation. J Biomech 31(7):579–586
Zurück zum Zitat Lovejoy CO (1988) Evolution of human walking. Sci Am 259(5):118–125 Lovejoy CO (1988) Evolution of human walking. Sci Am 259(5):118–125
Zurück zum Zitat Lovejoy CO (2005) The natural history of human gait and posture. Part 2. Hip and thigh. Gait Post 21 (1):113–124 Lovejoy CO (2005) The natural history of human gait and posture. Part 2. Hip and thigh. Gait Post 21 (1):113–124
Zurück zum Zitat Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13 (4):503–512 Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13 (4):503–512
Zurück zum Zitat Oonishi H, Isha H, Hasegawa T (1983) Mechanical analysis of the human pelvis and its application to the artificial hip joint - by means of the three dimensional finite element method. J Biomech 16(6):427–444 Oonishi H, Isha H, Hasegawa T (1983) Mechanical analysis of the human pelvis and its application to the artificial hip joint - by means of the three dimensional finite element method. J Biomech 16(6):427–444
Zurück zum Zitat Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30(9):959–965 Pedersen DR, Brand RA, Davy DT (1997) Pelvic muscle and acetabular contact forces during gait. J Biomech 30(9):959–965
Zurück zum Zitat Ricci PL, Maas S, Kelm J, Gerich T (2018) Finite element analysis of the pelvis including gait muscle forces: an investigation into the effect of rami fractures on load transmission. J Exper Orthopaed 5(1):1–9 Ricci PL, Maas S, Kelm J, Gerich T (2018) Finite element analysis of the pelvis including gait muscle forces: an investigation into the effect of rami fractures on load transmission. J Exper Orthopaed 5(1):1–9
Zurück zum Zitat Rodrigues H, Guedes JM, Bendsoe MP (2002a) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10 Rodrigues H, Guedes JM, Bendsoe MP (2002a) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10
Zurück zum Zitat Rodrigues H, Jacobs C, Guedes JM, Bendsøe MP (2002b) Global and local material optimization models applied to anisotropic bone adaptation. In: Pedersen P, Bendsøe MP (eds) IUTAM Symposium on synthesis in bio solid mechanics. Springer, Netherlands, pp 209–220 Rodrigues H, Jacobs C, Guedes JM, Bendsøe MP (2002b) Global and local material optimization models applied to anisotropic bone adaptation. In: Pedersen P, Bendsøe MP (eds) IUTAM Symposium on synthesis in bio solid mechanics. Springer, Netherlands, pp 209–220
Zurück zum Zitat Rozvany GI (2000) The simp method in topology optimization - theoretical background, advantages and new applications. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization Rozvany GI (2000) The simp method in topology optimization - theoretical background, advantages and new applications. In: Proceedings of 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization
Zurück zum Zitat Rozvany GI (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATH Rozvany GI (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATH
Zurück zum Zitat Ruimerman R, Hilbers P, Van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–941 Ruimerman R, Hilbers P, Van Rietbergen B, Huiskes R (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–941
Zurück zum Zitat Seireg A, Arvikar RJ (1973) A mathematical model for evaluation of forces in lower extremities of musculoskeletal system. J Biomech 6(3):313–326 Seireg A, Arvikar RJ (1973) A mathematical model for evaluation of forces in lower extremities of musculoskeletal system. J Biomech 6(3):313–326
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21:120–127 Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21:120–127
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNet Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055MathSciNet
Zurück zum Zitat Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Nat Acad Sci 107(30):13,222–13,227 Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Nat Acad Sci 107(30):13,222–13,227
Zurück zum Zitat Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH (2016) Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput 54(7):1123–1135 Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH (2016) Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput 54(7):1123–1135
Zurück zum Zitat Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48(8):487–545 Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48(8):487–545
Zurück zum Zitat Uri K (1994) Efficient sensitivity analysis for structural optimization. Comput Methods Appl Mech Eng 117:143–156MATH Uri K (1994) Efficient sensitivity analysis for structural optimization. Comput Methods Appl Mech Eng 117:143–156MATH
Zurück zum Zitat Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25(12):1425–1441 Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25(12):1425–1441
Zurück zum Zitat Wolff J (1892) The law of bone remodelling. Translated version, 1986. Springer Wolff J (1892) The law of bone remodelling. Translated version, 1986. Springer
Zurück zum Zitat Zhao X, Liu Y, Hua L, Mao H (2016) Finite element analysis and topology optimization of a 12000KN fine blanking press frame. Struct Multidiscip Optim 54(2):375–389 Zhao X, Liu Y, Hua L, Mao H (2016) Finite element analysis and topology optimization of a 12000KN fine blanking press frame. Struct Multidiscip Optim 54(2):375–389
Metadaten
Titel
Topology optimization of the hip bone for gait cycle
verfasst von
Kandula Eswara Sai Kumar
Sourav Rakshit
Publikationsdatum
12.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-020-02593-5

Weitere Artikel der Ausgabe 4/2020

Structural and Multidisciplinary Optimization 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.