Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2017

06.06.2017 | Invited Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Total internal reflection-based optofluidic waveguides fabricated in aerogels

verfasst von: Yaprak Özbakır, Alexandr Jonáš, Alper Kiraz, Can Erkey

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Liquid-core optofluidic waveguides based on total internal reflection of light were built in water-filled cylindrical microchannels fabricated in hydrophobic silica aerogels. Silica aerogels with densities ranging from 0.15 to 0.39 g/cm3 were produced by aging of alcogels in tetraethylorthosilicate solution for various time periods, followed by supercritical extraction of the solvent from the alcogel network. Subsequently, the resulting hydrophilic aerogel samples were made hydrophobic by hexamethyldisilazane vapor treatment. The synthesized samples retained their low refractive index (below ~1.09) and, hence, they could serve as suitable optical cladding materials for aqueous waveguide cores (refractive index n core = 1.33). Hydrophobic silica aerogel samples produced by the above technique also had low absorption coefficients in the visible part of the spectrum. Fabrication of microchannels in aerogel blocks by manual drilling preserving nanoporous and monolithic structure of aerogels was demonstrated for the first time. Long channels (up to ~7.5 cm) with varying geometries such as straight and inclined L-shaped channels could be fabricated. Multimode optofluidic waveguides prepared by filling the channels in the drilled aerogel monoliths with water yielded high numerical aperture values (~0.8). Efficient guiding of light by total internal reflection in the water-filled channels in aerogels was visually revealed and characterized by monitoring the channel output. The presented technique is expected to open up further possibilities for creating three-dimensional networks of liquid channels in aerogels for optofluidic applications.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4426-8/MediaObjects/10971_2017_4426_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photon 1(2):106–114CrossRef Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photon 1(2):106–114CrossRef
2.
Zurück zum Zitat Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386CrossRef Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101):381–386CrossRef
3.
Zurück zum Zitat Pang L, Chen HM, Freeman LM, Fainman Y (2012) Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip 12(19):3543–3551CrossRef Pang L, Chen HM, Freeman LM, Fainman Y (2012) Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip 12(19):3543–3551CrossRef
4.
Zurück zum Zitat Lei L, Wang N, Zhang XM, Tai Q, Tsai DP, Chan HL (2010) Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics 4(4):43004CrossRef Lei L, Wang N, Zhang XM, Tai Q, Tsai DP, Chan HL (2010) Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics 4(4):43004CrossRef
5.
Zurück zum Zitat Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photon 5(10):583–590CrossRef Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photon 5(10):583–590CrossRef
6.
Zurück zum Zitat Korampally V, Mukherjee S, Hossain M, Manor R, Yun M, Gangopadhyay K, Polo-Parada L, Gangopadhyay S (2009) Development of a miniaturized liquid core waveguide system with nanoporous dielectric cladding—A potential biosensing platform. IEEE Sens J 9(12):1711–1718CrossRef Korampally V, Mukherjee S, Hossain M, Manor R, Yun M, Gangopadhyay K, Polo-Parada L, Gangopadhyay S (2009) Development of a miniaturized liquid core waveguide system with nanoporous dielectric cladding—A potential biosensing platform. IEEE Sens J 9(12):1711–1718CrossRef
7.
Zurück zum Zitat Manor R, Datta A, Ahmad I, Holtz M, Gangopadhyay S, Dallas T (2003) Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF. IEEE Sens J 3(6):687–692CrossRef Manor R, Datta A, Ahmad I, Holtz M, Gangopadhyay S, Dallas T (2003) Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF. IEEE Sens J 3(6):687–692CrossRef
8.
Zurück zum Zitat Parks JW, Schmidt H (2016) Flexible optofluidic waveguide platform with multi-dimensional reconfigurability. Sci Rep 6:33008CrossRef Parks JW, Schmidt H (2016) Flexible optofluidic waveguide platform with multi-dimensional reconfigurability. Sci Rep 6:33008CrossRef
9.
Zurück zum Zitat Cristiano MBC, Christiano JSdM, Eliane MdS, Alexandre B, Jackson SKO, Tilon F, Giancarlo C, Alfredo RV, Carlos HBC (2007) Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre. Meas Sci Technol 18(10):3075CrossRef Cristiano MBC, Christiano JSdM, Eliane MdS, Alexandre B, Jackson SKO, Tilon F, Giancarlo C, Alfredo RV, Carlos HBC (2007) Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre. Meas Sci Technol 18(10):3075CrossRef
10.
Zurück zum Zitat Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat photonic 5(10):591–597CrossRef Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat photonic 5(10):591–597CrossRef
11.
Zurück zum Zitat Ozcelik D, Parks JW, Wall TA, Stott MA, Cai H, Parks JW, Hawkins AR, Schmidt H (2015) Optofluidic wavelength division multiplexing for single-virus detection. Proc Natl Acad Sci U S A 112(42):12933–12937CrossRef Ozcelik D, Parks JW, Wall TA, Stott MA, Cai H, Parks JW, Hawkins AR, Schmidt H (2015) Optofluidic wavelength division multiplexing for single-virus detection. Proc Natl Acad Sci U S A 112(42):12933–12937CrossRef
12.
Zurück zum Zitat Ellis PS, Gentle BS, Grace MR, McKelvie ID (2009) A versatile total internal reflection photometric detection cell for flow analysis. Talanta 79(3):830–835CrossRef Ellis PS, Gentle BS, Grace MR, McKelvie ID (2009) A versatile total internal reflection photometric detection cell for flow analysis. Talanta 79(3):830–835CrossRef
13.
Zurück zum Zitat Shih-Hao H, Fan-Gang T (2005) Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing. J Micromech Microeng 15(12):2235CrossRef Shih-Hao H, Fan-Gang T (2005) Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing. J Micromech Microeng 15(12):2235CrossRef
14.
Zurück zum Zitat Jung JH, Lee KS, Im S, Destgeer G, Ha BH, Park J, Sung HJ (2016) Photosynthesis of cyanobacteria in a miniaturized optofluidic waveguide platform. RSC Adv 6(14):11081–11087CrossRef Jung JH, Lee KS, Im S, Destgeer G, Ha BH, Park J, Sung HJ (2016) Photosynthesis of cyanobacteria in a miniaturized optofluidic waveguide platform. RSC Adv 6(14):11081–11087CrossRef
15.
Zurück zum Zitat Ramachandran S, Cohen DA, Quist AP, Lal R (2013) High performance, LED powered, waveguide based total internal reflection microscopy. Sci Rep 3:2133CrossRef Ramachandran S, Cohen DA, Quist AP, Lal R (2013) High performance, LED powered, waveguide based total internal reflection microscopy. Sci Rep 3:2133CrossRef
16.
Zurück zum Zitat Dallas T, Dasgupta PK (2004) Light at the end of the tunnel: recent analytical applications of liquid-core waveguides. Trends Anal Chem 23(5):385–392CrossRef Dallas T, Dasgupta PK (2004) Light at the end of the tunnel: recent analytical applications of liquid-core waveguides. Trends Anal Chem 23(5):385–392CrossRef
17.
Zurück zum Zitat Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32(24):3157CrossRef Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32(24):3157CrossRef
18.
Zurück zum Zitat Bernini R, Campopiano S, Zeni L, Sarro PM (2004) ARROW optical waveguides based sensors. Sens Actuators B Chem 100(1–2):143–146CrossRef Bernini R, Campopiano S, Zeni L, Sarro PM (2004) ARROW optical waveguides based sensors. Sens Actuators B Chem 100(1–2):143–146CrossRef
19.
Zurück zum Zitat Hawkins AR, Schmidt H (2007) Optofluidic waveguides: II. Fabrication and structures. Microfluid Nanofluidics 4(1–2):17–32CrossRef Hawkins AR, Schmidt H (2007) Optofluidic waveguides: II. Fabrication and structures. Microfluid Nanofluidics 4(1–2):17–32CrossRef
20.
Zurück zum Zitat Özbakır Y, Jonas A, Kiraz A, Erkey C (2017) Aerogels for optofluidic waveguides. Micromachines 8(4):98CrossRef Özbakır Y, Jonas A, Kiraz A, Erkey C (2017) Aerogels for optofluidic waveguides. Micromachines 8(4):98CrossRef
21.
Zurück zum Zitat Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluidics 4(1):3–16CrossRef Schmidt H, Hawkins AR (2008) Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluidics 4(1):3–16CrossRef
22.
Zurück zum Zitat Hawkins AR, Schmidt H (2008) Optofluidic waveguides: II. Fabrication and structures. Microfluid Nanofluidics 4(1):17–32CrossRef Hawkins AR, Schmidt H (2008) Optofluidic waveguides: II. Fabrication and structures. Microfluid Nanofluidics 4(1):17–32CrossRef
23.
Zurück zum Zitat Yalizay B, Morova Y, Dincer K, Ozbakir Y, Jonas A, Erkey C, Kiraz A, Akturk S (2015) Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation. Opt Mater 47:478–483CrossRef Yalizay B, Morova Y, Dincer K, Ozbakir Y, Jonas A, Erkey C, Kiraz A, Akturk S (2015) Versatile liquid-core optofluidic waveguides fabricated in hydrophobic silica aerogels by femtosecond-laser ablation. Opt Mater 47:478–483CrossRef
24.
Zurück zum Zitat Datta A, In-Yong E, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta PK (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3(6):788–795CrossRef Datta A, In-Yong E, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta PK (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3(6):788–795CrossRef
26.
Zurück zum Zitat Cho SH, Godin J, Lo YH (2009) Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photon Technol Lett 21(15):1057–1059CrossRef Cho SH, Godin J, Lo YH (2009) Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels. IEEE Photon Technol Lett 21(15):1057–1059CrossRef
27.
Zurück zum Zitat Datta A, Eom IY, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin F, Dasgupta PK (2003) Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3(6):788–795CrossRef Datta A, Eom IY, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin F, Dasgupta PK (2003) Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3(6):788–795CrossRef
28.
Zurück zum Zitat Hüsing N, Schubert U (1998) Aerogels—Airy Materials: chemistry, structure, and properties. Angew Chem Int Ed 37(1–2):22–45CrossRef Hüsing N, Schubert U (1998) Aerogels—Airy Materials: chemistry, structure, and properties. Angew Chem Int Ed 37(1–2):22–45CrossRef
29.
Zurück zum Zitat Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968. doi:10.3390/ma6030941 CrossRef Du A, Zhou B, Zhang ZH, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968. doi:10.​3390/​ma6030941 CrossRef
30.
Zurück zum Zitat Bellunato T, Calvi M, Matteuzzi C, Musy M, Perego DL, Storaci B (2007) Refractive index dispersion law of silica aerogel. Eur Phys J C 52(3):759–764CrossRef Bellunato T, Calvi M, Matteuzzi C, Musy M, Perego DL, Storaci B (2007) Refractive index dispersion law of silica aerogel. Eur Phys J C 52(3):759–764CrossRef
31.
Zurück zum Zitat Xiao L, Birks TA (2011) Optofluidic microchannels in aerogel. Opt Lett 36(16):3275–3277CrossRef Xiao L, Birks TA (2011) Optofluidic microchannels in aerogel. Opt Lett 36(16):3275–3277CrossRef
32.
Zurück zum Zitat Eris G, Sanli D, Ulker Z, Bozbag SE, Jonás A, Kiraz A, Erkey C (2013) Three-dimensional optofluidic waveguides in hydrophobic silica aerogels via supercritical fluid processing. J Supercrit Fluids 73:28–33CrossRef Eris G, Sanli D, Ulker Z, Bozbag SE, Jonás A, Kiraz A, Erkey C (2013) Three-dimensional optofluidic waveguides in hydrophobic silica aerogels via supercritical fluid processing. J Supercrit Fluids 73:28–33CrossRef
33.
Zurück zum Zitat Bian Q, Chen S, Kim B-T, Leventis N, Lu H, Chang Z, Lei S (2011) Micromachining of polyurea aerogel using femtosecond laser pulses. J Non-Cryst Solids 357(1):186–193CrossRef Bian Q, Chen S, Kim B-T, Leventis N, Lu H, Chang Z, Lei S (2011) Micromachining of polyurea aerogel using femtosecond laser pulses. J Non-Cryst Solids 357(1):186–193CrossRef
34.
Zurück zum Zitat Issa NA (2004) High numerical aperture in multimode microstructured optical fibers. Appl Opt 43(33):6191–6197CrossRef Issa NA (2004) High numerical aperture in multimode microstructured optical fibers. Appl Opt 43(33):6191–6197CrossRef
35.
Zurück zum Zitat Djouadi D, Meddouri M, Chelouche A (2014) Structural and optical characterizations of ZnO aerogel nanopowder synthesized from zinc acetate ethanolic solution. Opt Mater 37:567–571CrossRef Djouadi D, Meddouri M, Chelouche A (2014) Structural and optical characterizations of ZnO aerogel nanopowder synthesized from zinc acetate ethanolic solution. Opt Mater 37:567–571CrossRef
36.
Zurück zum Zitat Thorlabs (1999) Optical Substrates. Accessed 16 November 2017 Thorlabs (1999) Optical Substrates. Accessed 16 November 2017
37.
Zurück zum Zitat Riedel D, Castex MC (1999) Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm. Appl Phys A 69(4):375–380CrossRef Riedel D, Castex MC (1999) Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm. Appl Phys A 69(4):375–380CrossRef
38.
Zurück zum Zitat Thorlabs (1999) Multimode Fiber Optic Patch Cables. Accessed 16 November 2017 Thorlabs (1999) Multimode Fiber Optic Patch Cables. Accessed 16 November 2017
39.
Zurück zum Zitat Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36(33):8710–8723CrossRef Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36(33):8710–8723CrossRef
Metadaten
Titel
Total internal reflection-based optofluidic waveguides fabricated in aerogels
verfasst von
Yaprak Özbakır
Alexandr Jonáš
Alper Kiraz
Can Erkey
Publikationsdatum
06.06.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4426-8

Weitere Artikel der Ausgabe 3/2017

Journal of Sol-Gel Science and Technology 3/2017 Zur Ausgabe

Invited Paper: Sol-gel and hybrid materials with surface modification for applications

One-pot sol–gel synthesis of amine hybrid titania/silsesquioxane composite aerogel for CO2 capture

Invited Paper: Sol-gel and hybrid materials for energy, environment and building applications

Aerogel insulation materials for industrial installation: properties and structure of new factory-made products

Invited Paper: Sol-gel and hybrid materials for energy, environment and building applications

Silica aerogel paper honeycomb composites for thermal insulations

Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Preparation and characterization of copper-containing alumina and silica aerogels for catalytic applications

Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.