Skip to main content
Erschienen in: Cellulose 1/2014

01.02.2014 | Original Paper

Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG

verfasst von: Jun Yang, Jing-Jing Zhao, Chun-Rui Han, Jiu-Fang Duan, Feng Xu, Run-Cang Sun

Erschienen in: Cellulose | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose-derived materials are usually characterized by sophisticated structures, leading to unique and multiple functions, which have been a source of inspiration for the fabrication of a wide variety of nanocomposites. Cellulose nanocrystals/poly(acrylamide) (CNCs/PAM) nanocomposite hydrogels were synthesized via in situ polymerization in the CNC suspension. The cellulose from pulp fiber under different sulfuric acid hydrolysis conditions, examined by conductometric titration and transmission electron microscopy, was applied to study how the effects of the surface charge and aspect ratio affect CNCs’ mechanical reinforcement in nanocomposites. The results indicated that the higher surface charge concentration resulted in better dispersibility in aqueous suspension, leading to a more efficient energy dissipation process. The CNC reinforcement behavior followed the percolation model where the greater aspect ratio of CNC contributed to higher mechanical properties. The preferential adsorption of poly(ethylene glycol) (PEG) on the CNC surface was characterized by zeta potential measurements where the fracture strength and fracture elongation of nanocomposites decreased with increasing PEG concentration. The adsorption of PEG on the CNC surface occupied the active sites for polymer chain propagation, which hindered the PAM cross-linking effect on the CNC surface and decreased the cross-linking density of the network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbott A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779–791CrossRef Abbott A, Bismarck A (2010) Self-reinforced cellulose nanocomposites. Cellulose 17:779–791CrossRef
Zurück zum Zitat Angelikopoulos P, Harthy SA, Bock H (2009) Structural forces from directed self-assembly. J Phys Chem B 113:13817–13824CrossRef Angelikopoulos P, Harthy SA, Bock H (2009) Structural forces from directed self-assembly. J Phys Chem B 113:13817–13824CrossRef
Zurück zum Zitat Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214CrossRef Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRef
Zurück zum Zitat Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716CrossRef Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716CrossRef
Zurück zum Zitat De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Supramolecular polymerization. Chem Rev 109:5687–5754CrossRef De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Supramolecular polymerization. Chem Rev 109:5687–5754CrossRef
Zurück zum Zitat Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRef
Zurück zum Zitat Du Y, Shen SZ, Cai KF, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841CrossRef Du Y, Shen SZ, Cai KF, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841CrossRef
Zurück zum Zitat Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRef Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRef
Zurück zum Zitat Elsabahy M, Wooley K (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561CrossRef Elsabahy M, Wooley K (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561CrossRef
Zurück zum Zitat Favier V, Chanzy H, CavailléJ Y (1996) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef Favier V, Chanzy H, CavailléJ Y (1996) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367CrossRef
Zurück zum Zitat Flory PJ (1953) Principles of polymer chemistry. Cornell University, Ithaca Flory PJ (1953) Principles of polymer chemistry. Cornell University, Ithaca
Zurück zum Zitat Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368CrossRef Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368CrossRef
Zurück zum Zitat Garbin V, Crocker JC, Stebe KJ (2012) Nanoparticles at fluid interfaces: exploiting capping ligands to control adsorption, stability and dynamics. J Colloid Interface Sci 387:1–11CrossRef Garbin V, Crocker JC, Stebe KJ (2012) Nanoparticles at fluid interfaces: exploiting capping ligands to control adsorption, stability and dynamics. J Colloid Interface Sci 387:1–11CrossRef
Zurück zum Zitat Gersappe D (2002) Molecular mechanisms of Failure in polymer nanocomposites. Phys Rev Lett 89:058301CrossRef Gersappe D (2002) Molecular mechanisms of Failure in polymer nanocomposites. Phys Rev Lett 89:058301CrossRef
Zurück zum Zitat Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRef Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRef
Zurück zum Zitat Joshi RK, Schneider JJ (2012) Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem Soc Rev 41:5285–5312CrossRef Joshi RK, Schneider JJ (2012) Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem Soc Rev 41:5285–5312CrossRef
Zurück zum Zitat Kao J, Thorkelsson K, Bai P, Rancatore BJ, Xu T (2013) Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem Soc Rev 42:2654–2678CrossRef Kao J, Thorkelsson K, Bai P, Rancatore BJ, Xu T (2013) Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem Soc Rev 42:2654–2678CrossRef
Zurück zum Zitat Langner KM, Sevink GJA (2012) Mesoscale modeling of block copolymer nanocomposites. Soft Matter 8:5102–5118CrossRef Langner KM, Sevink GJA (2012) Mesoscale modeling of block copolymer nanocomposites. Soft Matter 8:5102–5118CrossRef
Zurück zum Zitat Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20:191–213CrossRef Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20:191–213CrossRef
Zurück zum Zitat Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294CrossRef Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294CrossRef
Zurück zum Zitat Loizou E, Butler P, Porcar L, Kesselman E, Talmon Y, Dundigalla A, Schmidt G (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38:2047–2049CrossRef Loizou E, Butler P, Porcar L, Kesselman E, Talmon Y, Dundigalla A, Schmidt G (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38:2047–2049CrossRef
Zurück zum Zitat Lu ZD, Yin YD (2012) Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 41:6874–6887CrossRef Lu ZD, Yin YD (2012) Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 41:6874–6887CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRef
Zurück zum Zitat Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford
Zurück zum Zitat Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369CrossRef Rusli R, Shanmuganathan K, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites—influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369CrossRef
Zurück zum Zitat Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41:909–930CrossRef Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41:909–930CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237CrossRef Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237CrossRef
Zurück zum Zitat Treloar LRG (2005) The physics of rubbery elasticity. Clarendon Press, London Treloar LRG (2005) The physics of rubbery elasticity. Clarendon Press, London
Zurück zum Zitat Vesaratchanon S, Nikolov A, Wasan DT (2007) Sedimentation in nano-colloidal dispersions: effects of collective interactions and particle charge. Adv Colloid Interface 134:268–278CrossRef Vesaratchanon S, Nikolov A, Wasan DT (2007) Sedimentation in nano-colloidal dispersions: effects of collective interactions and particle charge. Adv Colloid Interface 134:268–278CrossRef
Zurück zum Zitat Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237CrossRef Yang J, Han CR, Duan JF, Ma MG, Zhang XM, Xu F, Sun RC (2013) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237CrossRef
Zurück zum Zitat Zhang H, Liu Y, Yao D, Yang B (2012) Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem Soc Rev 41:6066–6088CrossRef Zhang H, Liu Y, Yao D, Yang B (2012) Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem Soc Rev 41:6066–6088CrossRef
Metadaten
Titel
Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG
verfasst von
Jun Yang
Jing-Jing Zhao
Chun-Rui Han
Jiu-Fang Duan
Feng Xu
Run-Cang Sun
Publikationsdatum
01.02.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0111-4

Weitere Artikel der Ausgabe 1/2014

Cellulose 1/2014 Zur Ausgabe