Skip to main content

2023 | OriginalPaper | Buchkapitel

Towards a Taxonomy for Reversible Computation Approaches

verfasst von : Robert Glück, Ivan Lanese, Claudio Antares Mezzina, Jarosław Adam Miszczak, Iain Phillips, Irek Ulidowski, Germán Vidal

Erschienen in: Reversible Computation

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reversible computation is a paradigm allowing computation to proceed not only in the usual, forward direction, but also backwards. Reversible computation has been studied in a variety of models, including sequential and concurrent programming languages, automata, process calculi, Turing machines, circuits, Petri nets, event structures, term rewriting, quantum computing, and others. Also, it has found applications in areas as different as low-power computing, debugging, simulation, robotics, database design, and biochemical modeling. Thus, while the broad idea of reversible computation is the same in all the areas, it has been interpreted and adapted to fit the various settings. The existing notions of reversible computation however have never been compared and categorized in detail. This work aims at being a first stepping stone towards a taxonomy of the approaches that co-exist under the term reversible computation. We hope that such a work will shed light on the relation among the various approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the following we mainly use the term model to refer to the instances of reversible computation that we consider. Indeed, many of our examples are (formal) models. However, we think that our taxonomy can be applied also to more concrete entities, such as languages, applications or systems.
 
Literatur
5.
Zurück zum Zitat Barbanera, F., Lanese, I., de’Liguoro, U.: A theory of retractable and speculative contracts. Sci. Comput. Program. 167, 25–50 (2018) Barbanera, F., Lanese, I., de’Liguoro, U.: A theory of retractable and speculative contracts. Sci. Comput. Program. 167, 25–50 (2018)
6.
Zurück zum Zitat Barylska, K., Koutny, M., Mikulski, Ł., Pia̧tkowski, M.: Reversible computation vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018) Barylska, K., Koutny, M., Mikulski, Ł., Pia̧tkowski, M.: Reversible computation vs. reversibility in Petri nets. Sci. Comput. Program. 151, 48–60 (2018)
7.
Zurück zum Zitat Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R.B., Jacobsen, J.-H.: Understanding and mitigating exploding inverses in invertible neural networks. In: AISTATS 2021, volume 130 of Proceedings of Machine Learning Research, pp. 1792–1800. PMLR (2021) Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R.B., Jacobsen, J.-H.: Understanding and mitigating exploding inverses in invertible neural networks. In: AISTATS 2021, volume 130 of Proceedings of Machine Learning Research, pp. 1792–1800. PMLR (2021)
11.
Zurück zum Zitat Bernstein, A.P., Newcomer, E.: Principles of Transaction Processing, 2nd edn. Morgan Kaufmann Publishers Inc., Burlington (2009)MATH Bernstein, A.P., Newcomer, E.: Principles of Transaction Processing, 2nd edn. Morgan Kaufmann Publishers Inc., Burlington (2009)MATH
13.
Zurück zum Zitat Briggs, J.S.: Generating reversible programs. Softw. Pract. Exper. 17(7), 439–453 (1987)CrossRef Briggs, J.S.: Generating reversible programs. Softw. Pract. Exper. 17(7), 439–453 (1987)CrossRef
14.
Zurück zum Zitat Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow composition languages. In: POPL 2005, pp. 209–220. ACM (2005) Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow composition languages. In: POPL 2005, pp. 209–220. ACM (2005)
16.
Zurück zum Zitat Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Sci. Ann. Comput. Sci. 21(2), 175–198 (2011)MathSciNetMATH Cardelli, L., Laneve, C.: Reversibility in massive concurrent systems. Sci. Ann. Comput. Sci. 21(2), 175–198 (2011)MathSciNetMATH
17.
Zurück zum Zitat Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Reversible sessions with flexible choices. Acta Inform. 56(7–8), 553–583 (2019) Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Reversible sessions with flexible choices. Acta Inform. 56(7–8), 553–583 (2019)
18.
Zurück zum Zitat Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible \(\pi \)-calculus. In: LICS 2013, pp. 388–397. IEEE Computer Society (2013) Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible \(\pi \)-calculus. In: LICS 2013, pp. 388–397. IEEE Computer Society (2013)
21.
Zurück zum Zitat Davis, M.G., Smith, E., Tudor, A., Sen, K., Siddiqi, I., Iancu, C.: Towards optimal topology aware quantum circuit synthesis. In: QCE 2020, pp. 223–234. IEEE (2020) Davis, M.G., Smith, E., Tudor, A., Sen, K., Siddiqi, I., Iancu, C.: Towards optimal topology aware quantum circuit synthesis. In: QCE 2020, pp. 223–234. IEEE (2020)
22.
Zurück zum Zitat De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, Hoboken (2010) De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications. Wiley, Hoboken (2010)
23.
Zurück zum Zitat De Vos, A., De Baerdemacker, S., Van Rentergem, Y., Synthesis of quantum circuits vs. synthesis of classical reversible circuits. In: Synthesis Lectures on Digital Circuits and Systems. Morgan & Claypool Publishers (2018) De Vos, A., De Baerdemacker, S., Van Rentergem, Y., Synthesis of quantum circuits vs. synthesis of classical reversible circuits. In: Synthesis Lectures on Digital Circuits and Systems. Morgan & Claypool Publishers (2018)
24.
Zurück zum Zitat Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A. Math. Phys. Sci. 400(1818), 97–117 (1985) Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A. Math. Phys. Sci. 400(1818), 97–117 (1985)
25.
Zurück zum Zitat Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Rep. Ser. 1(8), 1994 Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Rep. Ser. 1(8), 1994
27.
Zurück zum Zitat Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1999) Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1999)
28.
Zurück zum Zitat Fredkin, E., Toffoli, T.: Quantum mechanical computers. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)CrossRef Fredkin, E., Toffoli, T.: Quantum mechanical computers. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)CrossRef
30.
Zurück zum Zitat Glück, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative language. Comput. Softw. 33(3), 108–128 (2016) Glück, R., Yokoyama, T.: A linear-time self-interpreter of a reversible imperative language. Comput. Softw. 33(3), 108–128 (2016)
31.
Zurück zum Zitat Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans. Inf. Syst. E100-D(5), 1026–1034 (2017) Glück, R., Yokoyama, T.: A minimalist’s reversible while language. IEICE Trans. Inf. Syst. E100-D(5), 1026–1034 (2017)
32.
Zurück zum Zitat Glück, R., Yokoyama, T.: Reversible computing from a programming language perspective. Theor. Comput. Sci. 953, Article 113429 (2023) Glück, R., Yokoyama, T.: Reversible computing from a programming language perspective. Theor. Comput. Sci. 953, Article 113429 (2023)
33.
Zurück zum Zitat Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: backpropagation without storing activations. In: Advances in Neural Information Processing Systems. NIPS 2017, vol. 30, pp. 2214–2224. Curran Associates Inc. (2017) Gomez, A.N., Ren, M., Urtasun, R., Grosse, R.B.: The reversible residual network: backpropagation without storing activations. In: Advances in Neural Information Processing Systems. NIPS 2017, vol. 30, pp. 2214–2224. Curran Associates Inc. (2017)
34.
Zurück zum Zitat Graversen, E., Phillips, I.C.C., Yoshida, N.: Event structure semantics of (controlled) reversible CCS. J. Log. Algebraic Methods Program. 121, 100686 (2021) Graversen, E., Phillips, I.C.C., Yoshida, N.: Event structure semantics of (controlled) reversible CCS. J. Log. Algebraic Methods Program. 121, 100686 (2021)
37.
Zurück zum Zitat Hoey, J., Ulidowski, I.: Reversing an imperative concurrent programming language. Sci. Comput. Program. 223, 102873 (2022)CrossRef Hoey, J., Ulidowski, I.: Reversing an imperative concurrent programming language. Sci. Comput. Program. 223, 102873 (2022)CrossRef
39.
Zurück zum Zitat Jacobson, J.: A formalization of DARCs patch theory using inverse semigroups. Technical report, UCLA (2009) Jacobson, J.: A formalization of DARCs patch theory using inverse semigroups. Technical report, UCLA (2009)
40.
Zurück zum Zitat Kari, J.: Reversible cellular automata: from fundamental classical results to recent developments. New Gener. Comput. 36(3), 145–172 (2018)MathSciNetCrossRef Kari, J.: Reversible cellular automata: from fundamental classical results to recent developments. New Gener. Comput. 36(3), 145–172 (2018)MathSciNetCrossRef
41.
Zurück zum Zitat Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Hoboken (1979) Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Hoboken (1979)
42.
Zurück zum Zitat Knill, E.: Conventions for quantum pseudocode. Technical report LAUR-96-2724, Los Alamos National Lab (1996) Knill, E.: Conventions for quantum pseudocode. Technical report LAUR-96-2724, Los Alamos National Lab (1996)
43.
Zurück zum Zitat Kristensen, J.T., Kaarsgaard, R., Thomsen, M.K.: Jeopardy: an invertible functional programming language. CoRR, arXiv:2209.02422 (2022) Kristensen, J.T., Kaarsgaard, R., Thomsen, M.K.: Jeopardy: an invertible functional programming language. CoRR, arXiv:​2209.​02422 (2022)
44.
Zurück zum Zitat Kuhn, S., Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci. Comput. Program. 151, 18–47 (2018)CrossRef Kuhn, S., Ulidowski, I.: Local reversibility in a calculus of covalent bonding. Sci. Comput. Program. 151, 18–47 (2018)CrossRef
45.
Zurück zum Zitat Kuhn, S., Ulidowski, I.: Modelling of DNA mismatch repair with a reversible process calculus. Theor. Comput. Sci. 925, 68–86 (2022)MathSciNetCrossRefMATH Kuhn, S., Ulidowski, I.: Modelling of DNA mismatch repair with a reversible process calculus. Theor. Comput. Sci. 925, 68–86 (2022)MathSciNetCrossRefMATH
47.
51.
Zurück zum Zitat Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order \(\pi \)-calculus. Theor. Comput. Sci. 625, 25–84 (2016) Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversibility in the higher-order \(\pi \)-calculus. Theor. Comput. Sci. 625, 25–84 (2016)
52.
Zurück zum Zitat Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS 114 (2014) Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS 114 (2014)
53.
Zurück zum Zitat Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang. J. Log. Algebr. Meth. Program. 100, 71–97 (2018)MathSciNetCrossRefMATH Lanese, I., Nishida, N., Palacios, A., Vidal, G.: A theory of reversibility for Erlang. J. Log. Algebr. Meth. Program. 100, 71–97 (2018)MathSciNetCrossRefMATH
54.
Zurück zum Zitat Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay reversible semantics for message passing concurrent programs. Fundam. Informaticae 178(3), 229–266 (2021)MathSciNetCrossRefMATH Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay reversible semantics for message passing concurrent programs. Fundam. Informaticae 178(3), 229–266 (2021)MathSciNetCrossRefMATH
55.
Zurück zum Zitat Lanese, I., Schultz, U.P., Ulidowski, I.: Reversible computing in debugging of Erlang programs. IT Prof. 24(1), 74–80 (2022) Lanese, I., Schultz, U.P., Ulidowski, I.: Reversible computing in debugging of Erlang programs. IT Prof. 24(1), 74–80 (2022)
56.
Zurück zum Zitat Laursen, J.S., Ellekilde, L.-P.: Schultz, U.P.: Modelling reversible execution of robotic assembly. Robotica 36(5), 625–654 (2018) Laursen, J.S., Ellekilde, L.-P.: Schultz, U.P.: Modelling reversible execution of robotic assembly. Robotica 36(5), 625–654 (2018)
57.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
58.
Zurück zum Zitat Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization transformation based on automatic derivation of view complement functions. In: ICFP 2007, PP. 47–58. ACM (2007) Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization transformation based on automatic derivation of view complement functions. In: ICFP 2007, PP. 47–58. ACM (2007)
61.
Zurück zum Zitat Melgratti, H.C., Mezzina, C.A., Pinna, G.M.: A Petri net view of covalent bonds. Theor. Comput. Sci. 908, 89–119 (2022) Melgratti, H.C., Mezzina, C.A., Pinna, G.M.: A Petri net view of covalent bonds. Theor. Comput. Sci. 908, 89–119 (2022)
62.
Zurück zum Zitat Melgratti, H.C., Mezzina, C.A., Ulidowski, I.: Reversing place transition nets. Log. Methods Comput. Sci. 16(4) (2020) Melgratti, H.C., Mezzina, C.A., Ulidowski, I.: Reversing place transition nets. Log. Methods Comput. Sci. 16(4) (2020)
63.
Zurück zum Zitat Mimram, S., Di Giusto, C.: A categorical theory of patches. In: MFPS XXIX. Electronic Notes in Theoretical Computer Science, vol. 298, PP. 283–307. Elsevier (2013) Mimram, S., Di Giusto, C.: A categorical theory of patches. In: MFPS XXIX. Electronic Notes in Theoretical Computer Science, vol. 298, PP. 283–307. Elsevier (2013)
64.
Zurück zum Zitat Miszczak, J.: Models of quantum computation and quantum programming languages. Bull. Polish Acad. Sci. Tech. Sci. 59(3), 305–324 (2011)MATH Miszczak, J.: Models of quantum computation and quantum programming languages. Bull. Polish Acad. Sci. Tech. Sci. 59(3), 305–324 (2011)MATH
66.
Zurück zum Zitat Morita, K.: Computation-universality of one-dimensional one-way reversible cellular automata. Inf. Process. Lett. 42(6), 325–329 (1992)MathSciNetCrossRefMATH Morita, K.: Computation-universality of one-dimensional one-way reversible cellular automata. Inf. Process. Lett. 42(6), 325–329 (1992)MathSciNetCrossRefMATH
69.
Zurück zum Zitat Morrison, D., Ulidowski, I.: Direction-reversible self-timed cellular automata for delay-insensitive circuits. J. Cell. Autom. 12(1–2), 101–120 (2016)MathSciNetMATH Morrison, D., Ulidowski, I.: Direction-reversible self-timed cellular automata for delay-insensitive circuits. J. Cell. Autom. 12(1–2), 101–120 (2016)MathSciNetMATH
70.
Zurück zum Zitat Nakano, K.: Time-symmetric Turing machines for computable involutions. Sci. Comput. Program. 215, 102748 (2022)CrossRef Nakano, K.: Time-symmetric Turing machines for computable involutions. Sci. Comput. Program. 215, 102748 (2022)CrossRef
71.
Zurück zum Zitat Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for NISQ architectures. Quantum Sci. Technol. 5(2), 025010 (2020)CrossRef Nash, B., Gheorghiu, V., Mosca, M.: Quantum circuit optimizations for NISQ architectures. Quantum Sci. Technol. 5(2), 025010 (2020)CrossRef
72.
Zurück zum Zitat Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J. Log. Algebr. Methods Program. 94, 128–149 (2018)MathSciNetCrossRefMATH Nishida, N., Palacios, A., Vidal, G.: Reversible computation in term rewriting. J. Log. Algebr. Methods Program. 94, 128–149 (2018)MathSciNetCrossRefMATH
74.
Zurück zum Zitat Ömer, B.: Structured Quantum Programming. Ph.D. thesis, Vienna University of Technology (2003) Ömer, B.: Structured Quantum Programming. Ph.D. thesis, Vienna University of Technology (2003)
75.
Zurück zum Zitat Paolini, L., Piccolo, M., Roversi, L.: On a class of reversible primitive recursive functions and its Turing-complete extensions. New Gener. Comput. 36(3), 233–256 (2018)CrossRefMATH Paolini, L., Piccolo, M., Roversi, L.: On a class of reversible primitive recursive functions and its Turing-complete extensions. New Gener. Comput. 36(3), 233–256 (2018)CrossRefMATH
76.
Zurück zum Zitat Perumalla, K.S.:Introduction to Reversible Computing. CRC Press/Taylor & Francis Group (2014) Perumalla, K.S.:Introduction to Reversible Computing. CRC Press/Taylor & Francis Group (2014)
78.
Zurück zum Zitat Philippou, A., Psara, K.: A collective interpretation semantics for reversing Petri nets. Theor. Comput. Sci. 924, 148–170 (2022)MathSciNetCrossRefMATH Philippou, A., Psara, K.: A collective interpretation semantics for reversing Petri nets. Theor. Comput. Sci. 924, 148–170 (2022)MathSciNetCrossRefMATH
80.
Zurück zum Zitat Phillips, I., Ulidowski, I.: Event identifier logic. Math. Struct. Comput. Sci. 24(2) (2014) Phillips, I., Ulidowski, I.: Event identifier logic. Math. Struct. Comput. Sci. 24(2) (2014)
81.
Zurück zum Zitat Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. J. Log. Algebr. Methods Program. 84(6), 781–805 (2015)MathSciNetCrossRefMATH Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. J. Log. Algebr. Methods Program. 84(6), 781–805 (2015)MathSciNetCrossRefMATH
83.
Zurück zum Zitat Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73(1–2), 70–96 (2007) Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73(1–2), 70–96 (2007)
84.
Zurück zum Zitat Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of reversible C++ code for optimistic parallel discrete event simulation. New Gener. Comput. 36(3), 257–280 (2018) Schordan, M., Oppelstrup, T., Jefferson, D.R., Barnes Jr., P.D.: Generation of reversible C++ code for optimistic parallel discrete event simulation. New Gener. Comput. 36(3), 257–280 (2018)
86.
Zurück zum Zitat Schultz, U.P., Bordignon, M., Støy, K.: Robust and reversible execution of self-reconfiguration sequences. Robotica 29(1), 35–57 (2011) Schultz, U.P., Bordignon, M., Støy, K.: Robust and reversible execution of self-reconfiguration sequences. Robotica 29(1), 35–57 (2011)
87.
Zurück zum Zitat Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8(5), 1427–1430 (2019)CrossRef Siljak, H., Psara, K., Philippou, A.: Distributed antenna selection for massive MIMO using reversing Petri nets. IEEE Wirel. Commun. Lett. 8(5), 1427–1430 (2019)CrossRef
88.
Zurück zum Zitat Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible functional language RFUN. In: IFL 2015, pp. 8:1–8:13. ACM (2015) Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible functional language RFUN. In: IFL 2015, pp. 8:1–8:13. ACM (2015)
91.
Zurück zum Zitat Toffoli, T., Margolus, N.: Cellular Automata Machines. A New Environment for Modeling. MIT Press, Cambridge (1987)CrossRefMATH Toffoli, T., Margolus, N.: Cellular Automata Machines. A New Environment for Modeling. MIT Press, Cambridge (1987)CrossRefMATH
92.
Zurück zum Zitat Ulidowski, I., Phillips, I., Yuen, S.: Reversing event structures. New Gener. Comput. 36(3), 281–306 (2018)CrossRef Ulidowski, I., Phillips, I., Yuen, S.: Reversing event structures. New Gener. Comput. 36(3), 281–306 (2018)CrossRef
96.
Zurück zum Zitat Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart languages. Theor. Comput. Sci. 611, 87–115 (2016) Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart languages. Theor. Comput. Sci. 611, 87–115 (2016)
97.
Zurück zum Zitat Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: PEPM 2007, pp. 144–153. ACM (2007) Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: PEPM 2007, pp. 144–153. ACM (2007)
Metadaten
Titel
Towards a Taxonomy for Reversible Computation Approaches
verfasst von
Robert Glück
Ivan Lanese
Claudio Antares Mezzina
Jarosław Adam Miszczak
Iain Phillips
Irek Ulidowski
Germán Vidal
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-38100-3_3

Premium Partner