Skip to main content
Erschienen in: Water Resources Management 2/2018

03.11.2017

Towards Safer Data-Driven Forecasting of Extreme Streamflows

An Example Using Support Vector Regression

verfasst von: José P. Matos, Maria M. Portela, Anton J. Schleiss

Erschienen in: Water Resources Management | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Predicting extreme events is one of the major goals of streamflow forecasting, but models that are reliable under such conditions are hard to come by. This stems in part from the fact that, in many cases, calibration is based on recorded time series that do not comprise extreme events. The problem is particularly relevant in the case of data-driven models, which are focused in this work. Based on synthetic and real world streamflow forecasting examples, two main research questions are addressed: 1) would/should the models chosen by established practice be maintained were extreme events being considered and 2) how can established practice be improved in order to reduce the risks associated with the poor forecasting of extreme events? Among the data-driven models employed in streamflow forecasting, Support Vector Regression (SVR) has earned the researchers’ interest due to its good comparative performance. The present contribution builds upon the theory underlying this model in order to illustrate and discuss its tendency to predictably underestimate extreme flood peaks, raising awareness to the obvious risks that entails. While focusing on SVR, the work highlights dangers potentially present in other non-linear regularized models. The results clearly show that, under certain conditions, established practices for validation and choice may fail to identify the best models for predicting extreme streamflow events. Also, the paper puts forward practical recommendations that may help avoiding potential problems, namely: establishing up to what return period does the model maintain good performances; privileging small λ hyperparameters in Radial Basis Function (RBF) SVR models; preferring linear models when their validation performances are similar to those of non-linear models; and making use of predictions made by more than one type of data-driven model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akhtar MK, Corzo GA, van Andel SJ, Jonoski A (2009) River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrol Earth Syst Sci 13(9):1607–1618. https://doi.org/10.5194/hess-13-1607-2009 CrossRef Akhtar MK, Corzo GA, van Andel SJ, Jonoski A (2009) River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrol Earth Syst Sci 13(9):1607–1618. https://​doi.​org/​10.​5194/​hess-13-1607-2009 CrossRef
Zurück zum Zitat Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. In: Advances in neural information processing systems, MIT Press, Denver, Colorado, USA, vol 9 , pp 155–161 Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. In: Advances in neural information processing systems, MIT Press, Denver, Colorado, USA, vol 9 , pp 155–161
Zurück zum Zitat Evin G, Thyer M, Kavetski D, McInerney D, Kuczera G (2014) Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour Res 50(3):2350–2375. https://doi.org/10.1002/2013WR014185 CrossRef Evin G, Thyer M, Kavetski D, McInerney D, Kuczera G (2014) Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour Res 50(3):2350–2375. https://​doi.​org/​10.​1002/​2013WR014185 CrossRef
Zurück zum Zitat Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River
Zurück zum Zitat Matos JP (2014) Hydraulic-hydrologic model for the Zambezi River using satellite data and artificial intelligence techniques. PhD thesis 6225, Ėcole Polytechnique Fėdėrale de Lausanne and the University of Lisbon, Lausanne, Switzerland. https://doi.org/10.5075/epfl-thesis-6225 Matos JP (2014) Hydraulic-hydrologic model for the Zambezi River using satellite data and artificial intelligence techniques. PhD thesis 6225, Ėcole Polytechnique Fėdėrale de Lausanne and the University of Lisbon, Lausanne, Switzerland. https://​doi.​org/​10.​5075/​epfl-thesis-6225
Zurück zum Zitat Matos JP, Cohen Liechti T, Portela MM, Schleiss AJ (2013) Coupling satellite rainfall estimates and machine learning techniques for flow forecast: application to a large catchment in southern africa. In: Proceedings of 35th IAHR World Congress, Tsinghua University Press, Chengdu, China Matos JP, Cohen Liechti T, Portela MM, Schleiss AJ (2013) Coupling satellite rainfall estimates and machine learning techniques for flow forecast: application to a large catchment in southern africa. In: Proceedings of 35th IAHR World Congress, Tsinghua University Press, Chengdu, China
Zurück zum Zitat Schleiss AJ, Matos JP (2016) Zambezi river basin. In: Singh V P (ed) Handbook of applied hydrology, 2nd edn. chapter. McGraw-Hill Education, New York, p 98 Schleiss AJ, Matos JP (2016) Zambezi river basin. In: Singh V P (ed) Handbook of applied hydrology, 2nd edn. chapter. McGraw-Hill Education, New York, p 98
Zurück zum Zitat Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific Pub. Co. Inc, SingapoSreCrossRef Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific Pub. Co. Inc, SingapoSreCrossRef
Zurück zum Zitat Zarchan P, Musoff H (2009) Fundamentals of Kalman filtering: a practical approach, vol 232, 3rd edn. American Institute of Aeronautics and Astronautics, Reston Zarchan P, Musoff H (2009) Fundamentals of Kalman filtering: a practical approach, vol 232, 3rd edn. American Institute of Aeronautics and Astronautics, Reston
Metadaten
Titel
Towards Safer Data-Driven Forecasting of Extreme Streamflows
An Example Using Support Vector Regression
verfasst von
José P. Matos
Maria M. Portela
Anton J. Schleiss
Publikationsdatum
03.11.2017
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 2/2018
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-017-1834-z

Weitere Artikel der Ausgabe 2/2018

Water Resources Management 2/2018 Zur Ausgabe