Skip to main content

2020 | OriginalPaper | Buchkapitel

Towards Ubiquitous Privacy Decision Support: Machine Prediction of Privacy Decisions in IoT

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a mechanism to predict privacy decisions of users in Internet of Things (IoT) environments, through data mining and machine learning techniques. To construct predictive models, we tested several different machine learning models, combinations of features, and model training strategies on human behavioral data collected from an experience-sampling study. Experimental results showed that a machine learning model called linear model and deep neural networks (LMDNN) outperforms conventional methods for predicting users’ privacy decisions for various IoT services. We also found that a feature vector, composed of both contextual parameters and privacy segment information, provides LMDNN models with the best predictive performance. Lastly, we proposed a novel approach called one-size-fits-segment modeling, which provides a common predictive model to a segment of users who share a similar notion of privacy. We confirmed that one-size-fits-segment modeling outperforms previous approaches, namely individual and one-size-fits-all modeling. From a user perspective, our prediction mechanism takes contextual factors embedded in IoT services into account and only utilizes a small amount of information polled from the users. It is therefore less burdensome and privacy-invasive than the other mechanisms. We also discuss practical implications for building predictive models that make privacy decisions on behalf of users in IoT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The TensorFlow implementation of LMDNN provides an API that enables programmers to selectively configure a wide, deep, or wide and deep model.
 
2
A device of ICS (\(\textit{C}_\textit{3}=6\)) takes a photo of you (\(\textit{C}_\textit{2}=11\)). This happens once (\(\textit{C}_\textit{5}=0\)), while you are in DBH (\(\textit{C}_\textit{1}=3\)), for safety purposes (\(\textit{C}_\textit{4}=1\)), namely to determine if you are a wanted criminal.
 
3
Number of respondents (scenario ID): 140 (#20), 138 (#73), 136 (#93), 162 (#111).
 
4
1—(nonzero entries/total entries in a user-scenario matrix).
 
5
Mode values of these attributes are male, 18–25, and undergraduate students, respectively.
 
Literatur
1.
Zurück zum Zitat Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016) Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:​1603.​04467 (2016)
2.
Zurück zum Zitat Acquisti, A., Grossklags, J.: Privacy attitudes and privacy behavior. In: Economics of Information Security, pp. 165–178. Springer (2004) Acquisti, A., Grossklags, J.: Privacy attitudes and privacy behavior. In: Economics of Information Security, pp. 165–178. Springer (2004)
3.
Zurück zum Zitat Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRef Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRef
4.
Zurück zum Zitat Batalla, J.M., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electr. Eng. 52, 98–113 (2016)CrossRef Batalla, J.M., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electr. Eng. 52, 98–113 (2016)CrossRef
5.
Zurück zum Zitat Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adap. Inter. 26(1), 69–101 (2016)CrossRef Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adap. Inter. 26(1), 69–101 (2016)CrossRef
6.
Zurück zum Zitat Bengio, Y., Delalleau, O., Simard, C.: Decision trees do not generalize to new variations. Comput. Intell. 26(4), 449–467 (2010)MathSciNetCrossRef Bengio, Y., Delalleau, O., Simard, C.: Decision trees do not generalize to new variations. Comput. Intell. 26(4), 449–467 (2010)MathSciNetCrossRef
7.
Zurück zum Zitat Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Capturing location-privacy preferences: quantifying accuracy and user-burden tradeoffs. Pers. Ubiquit. Comput. 15(7), 679–694 (2011)CrossRef Benisch, M., Kelley, P.G., Sadeh, N., Cranor, L.F.: Capturing location-privacy preferences: quantifying accuracy and user-burden tradeoffs. Pers. Ubiquit. Comput. 15(7), 679–694 (2011)CrossRef
8.
Zurück zum Zitat Bilogrevic, I., Huguenin, K., Agir, B., Jadliwala, M., Gazaki, M., Hubaux, J.P.: A machine-learning based approach to privacy-aware information-sharing in mobile social networks. Pervasive Mob. Comput. 25, 125–142 (2016)CrossRef Bilogrevic, I., Huguenin, K., Agir, B., Jadliwala, M., Gazaki, M., Hubaux, J.P.: A machine-learning based approach to privacy-aware information-sharing in mobile social networks. Pervasive Mob. Comput. 25, 125–142 (2016)CrossRef
9.
Zurück zum Zitat Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: International Semantic Web Conference, pp. 138–155. Springer (2017) Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: International Semantic Web Conference, pp. 138–155. Springer (2017)
10.
Zurück zum Zitat Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide and deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016) Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide and deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10. ACM (2016)
11.
Zurück zum Zitat Chow, R., Egelman, S., Kannavara, R., Lee, H., Misra, S., Wang, E.: HCI in business: a collaboration with academia in IoT privacy. In: International Conference on HCI in Business, pp. 679–687. Springer (2015) Chow, R., Egelman, S., Kannavara, R., Lee, H., Misra, S., Wang, E.: HCI in business: a collaboration with academia in IoT privacy. In: International Conference on HCI in Business, pp. 679–687. Springer (2015)
12.
Zurück zum Zitat Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011)CrossRef Christin, D., Reinhardt, A., Kanhere, S.S., Hollick, M.: A survey on privacy in mobile participatory sensing applications. J. Syst. Softw. 84(11), 1928–1946 (2011)CrossRef
13.
Zurück zum Zitat Connelly, K., Khalil, A., Liu, Y.: Do I do what I say?: Observed versus stated privacy preferences. Hum. Comput. Interact. 2007, 620–623 (2007) Connelly, K., Khalil, A., Liu, Y.: Do I do what I say?: Observed versus stated privacy preferences. Hum. Comput. Interact. 2007, 620–623 (2007)
14.
Zurück zum Zitat Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th international conference on World Wide Web, pp. 351–360. ACM (2010) Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the 19th international conference on World Wide Web, pp. 351–360. ACM (2010)
15.
Zurück zum Zitat Hine, C.: Privacy in the marketplace. Inform. Soc. 14(4), 253–262 (1998)CrossRef Hine, C.: Privacy in the marketplace. Inform. Soc. 14(4), 253–262 (1998)CrossRef
16.
Zurück zum Zitat Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006)MathSciNetCrossRef Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006)MathSciNetCrossRef
17.
Zurück zum Zitat Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. DMKD 3(8), 34–39 (1997) Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. DMKD 3(8), 34–39 (1997)
18.
Zurück zum Zitat Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)CrossRef Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)CrossRef
19.
Zurück zum Zitat Jensen, C., Potts, C., Jensen, C.: Privacy practices of Internet users: self-reports versus observed behavior. Int. J. Hum. Comput. Stud. 63(1), 203–227 (2005)CrossRef Jensen, C., Potts, C., Jensen, C.: Privacy practices of Internet users: self-reports versus observed behavior. Int. J. Hum. Comput. Stud. 63(1), 203–227 (2005)CrossRef
20.
Zurück zum Zitat Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. arXiv preprint arXiv:1311.3715 (2013) Karayev, S., Trentacoste, M., Han, H., Agarwala, A., Darrell, T., Hertzmann, A., Winnemoeller, H.: Recognizing image style. arXiv preprint arXiv:​1311.​3715 (2013)
22.
Zurück zum Zitat Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. Int. J. Hum. Comput. Stud. 71(12), 1144–1162 (2013)CrossRef Knijnenburg, B.P., Kobsa, A., Jin, H.: Dimensionality of information disclosure behavior. Int. J. Hum. Comput. Stud. 71(12), 1144–1162 (2013)CrossRef
23.
Zurück zum Zitat Kumaraguru, P., Cranor, L.F.: Privacy indexes: a survey of Westin’s studies. Carnegie Mellon University, Pittsburgh, PA (2005) Kumaraguru, P., Cranor, L.F.: Privacy indexes: a survey of Westin’s studies. Carnegie Mellon University, Pittsburgh, PA (2005)
24.
Zurück zum Zitat Lankton, N., McKnight, D., Tripp, J.: Privacy management strategies: an exploratory cluster analysis. In: Proceedings of the 22nd Americas Conference on Information Systems (AMCIS 2016), pp. 1–10 (2016) Lankton, N., McKnight, D., Tripp, J.: Privacy management strategies: an exploratory cluster analysis. In: Proceedings of the 22nd Americas Conference on Information Systems (AMCIS 2016), pp. 1–10 (2016)
25.
Zurück zum Zitat Lee, H., Kobsa, A.: Understanding user privacy in Internet of Things environments. In: Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on, pp. 407–412. IEEE (2016) Lee, H., Kobsa, A.: Understanding user privacy in Internet of Things environments. In: Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on, pp. 407–412. IEEE (2016)
26.
Zurück zum Zitat Lee, H., Kobsa, A.: Privacy preference modeling and prediction in a simulated campuswide IoT environment. In: Pervasive Computing and Communications (PerCom), 2017 IEEE International Conference on, pp. 276–285. IEEE (2017) Lee, H., Kobsa, A.: Privacy preference modeling and prediction in a simulated campuswide IoT environment. In: Pervasive Computing and Communications (PerCom), 2017 IEEE International Conference on, pp. 276–285. IEEE (2017)
27.
Zurück zum Zitat Lee, H., Upright, C., Eliuk, S., Kobsa, A.: Personalized object recognition for augmenting human memory. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1054–1061. ACM (2016) Lee, H., Upright, C., Eliuk, S., Kobsa, A.: Personalized object recognition for augmenting human memory. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1054–1061. ACM (2016)
28.
Zurück zum Zitat Li, Y., Kobsa, A., Knijnenburg, B.P., Nguyen, C., et al.: Cross-cultural privacy prediction. Proc. Priv. Enhancing Technol. 2017(2), 113–132 (2017)CrossRef Li, Y., Kobsa, A., Knijnenburg, B.P., Nguyen, C., et al.: Cross-cultural privacy prediction. Proc. Priv. Enhancing Technol. 2017(2), 113–132 (2017)CrossRef
29.
Zurück zum Zitat Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy preferences: restoring usability in a sea of permission settings. In: Proceedings of the 10th Symposium on Usable Privacy and Security (SOUPS 2014), pp. 199–212 (2014) Lin, J., Liu, B., Sadeh, N., Hong, J.I.: Modeling users’ mobile app privacy preferences: restoring usability in a sea of permission settings. In: Proceedings of the 10th Symposium on Usable Privacy and Security (SOUPS 2014), pp. 199–212 (2014)
30.
Zurück zum Zitat Liu, B., Andersen, M.S., Schaub, F., Almuhimedi, H., Zhang, S., Sadeh, N., Acquisti, A., Agarwal, Y.: Follow my recommendations: a personalized privacy assistant for mobile app permissions. In: Proceedings of the 12th Symposium on Usable Privacy and Security (SOUPS 2016), pp. 27–41 (2016) Liu, B., Andersen, M.S., Schaub, F., Almuhimedi, H., Zhang, S., Sadeh, N., Acquisti, A., Agarwal, Y.: Follow my recommendations: a personalized privacy assistant for mobile app permissions. In: Proceedings of the 12th Symposium on Usable Privacy and Security (SOUPS 2016), pp. 27–41 (2016)
31.
Zurück zum Zitat Liu, Y., Yang, C., Jiang, L., Xie, S., Zhang, Y.: Intelligent edge computing for IoT-based energy management in smart cities. IEEE Netw. 33(2), 111–117 (2019)CrossRef Liu, Y., Yang, C., Jiang, L., Xie, S., Zhang, Y.: Intelligent edge computing for IoT-based energy management in smart cities. IEEE Netw. 33(2), 111–117 (2019)CrossRef
33.
Zurück zum Zitat Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), 139–145 (2018)CrossRef Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), 139–145 (2018)CrossRef
34.
Zurück zum Zitat Naeini, P.E., Bhagavatula, S., Habib, H., Degeling, M., Bauer, L., Cranor, L., Sadeh, N.: Privacy Expectations and preferences in an IoT world. In: Proceedings of the 13th Symposium on Usable Privacy and Security (SOUPS 2017), pp. 399–412 (2017) Naeini, P.E., Bhagavatula, S., Habib, H., Degeling, M., Bauer, L., Cranor, L., Sadeh, N.: Privacy Expectations and preferences in an IoT world. In: Proceedings of the 13th Symposium on Usable Privacy and Security (SOUPS 2017), pp. 399–412 (2017)
35.
Zurück zum Zitat Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: personal information disclosure intentions versus behaviors. J. Consum. Aff. 41(1), 100–126 (2007)CrossRef Norberg, P.A., Horne, D.R., Horne, D.A.: The privacy paradox: personal information disclosure intentions versus behaviors. J. Consum. Aff. 41(1), 100–126 (2007)CrossRef
36.
Zurück zum Zitat Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRef Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRef
37.
Zurück zum Zitat Perera, C., Ranjan, R., Wang, L., Khan, S.U., Zomaya, A.Y.: Big data privacy in the Internet of Things era. IT Prof. 17(3), 32–39 (2015)CrossRef Perera, C., Ranjan, R., Wang, L., Khan, S.U., Zomaya, A.Y.: Big data privacy in the Internet of Things era. IT Prof. 17(3), 32–39 (2015)CrossRef
39.
Zurück zum Zitat Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Pers. Ubiquit. Comput. 13(6), 401–412 (2009)CrossRef Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Understanding and capturing people’s privacy policies in a mobile social networking application. Pers. Ubiquit. Comput. 13(6), 401–412 (2009)CrossRef
40.
Zurück zum Zitat Shehab, M., Cheek, G., Touati, H., Squicciarini, A.C., Cheng, P.C.: User centric policy management in online social networks. In: Policies for Distributed Systems and Networks (POLICY), 2010 IEEE International Symposium on, pp. 9–13. IEEE (2010) Shehab, M., Cheek, G., Touati, H., Squicciarini, A.C., Cheng, P.C.: User centric policy management in online social networks. In: Policies for Distributed Systems and Networks (POLICY), 2010 IEEE International Symposium on, pp. 9–13. IEEE (2010)
41.
Zurück zum Zitat Shehab, M., Touati, H.: Semi-supervised policy recommendation for online social networks. In: Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on, pp. 360–367. IEEE (2012) Shehab, M., Touati, H.: Semi-supervised policy recommendation for online social networks. In: Advances in Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Conference on, pp. 360–367. IEEE (2012)
42.
Zurück zum Zitat Shi, S., Zhang, M., Lu, H., Liu, Y., Ma, S.: Wide and deep learning in job recommendation: an empirical study. In: Asia Information Retrieval Symposium, pp. 112–124. Springer (2017) Shi, S., Zhang, M., Lu, H., Liu, Y., Ma, S.: Wide and deep learning in job recommendation: an empirical study. In: Asia Information Retrieval Symposium, pp. 112–124. Springer (2017)
43.
Zurück zum Zitat Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)CrossRef Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)CrossRef
44.
Zurück zum Zitat Sinha, A., Li, Y., Bauer, L.: What you want is not what you get: predicting sharing policies for text-based content on facebook. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 13–24. ACM (2013) Sinha, A., Li, Y., Bauer, L.: What you want is not what you get: predicting sharing policies for text-based content on facebook. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 13–24. ACM (2013)
45.
Zurück zum Zitat Spyromitros-Xioufis, E., Petkos, G., Papadopoulos, S., Heyman, R., Kompatsiaris, Y.: Perceived versus actual predictability of personal information in social networks. In: International Conference on Internet Science, pp. 133–147. Springer (2016) Spyromitros-Xioufis, E., Petkos, G., Papadopoulos, S., Heyman, R., Kompatsiaris, Y.: Perceived versus actual predictability of personal information in social networks. In: International Conference on Internet Science, pp. 133–147. Springer (2016)
46.
Zurück zum Zitat Therneau, T.M., Atkinson, E.J., et al.: An Introduction to Recursive Partitioning Using the RPART Routines. Tech. rep, Mayo Foundation (1997) Therneau, T.M., Atkinson, E.J., et al.: An Introduction to Recursive Partitioning Using the RPART Routines. Tech. rep, Mayo Foundation (1997)
Metadaten
Titel
Towards Ubiquitous Privacy Decision Support: Machine Prediction of Privacy Decisions in IoT
verfasst von
Hosub Lee
Alfred Kobsa
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-44907-0_5