Skip to main content

2024 | OriginalPaper | Buchkapitel

Toxicity of Rhizospheric Cadmium Contaminated Soil and Its Phytoremediation

verfasst von : Prasann Kumar, Debjani Choudhury

Erschienen in: Cadmium Toxicity in Water

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The contamination of soils with heavy metals poses a significant threat to the environment and human health. Among these heavy metals, cadmium (Cd) is of particular concern due to its persistence, high toxicity, and ability to accumulate in the food chain. The rhizosphere, the region of soil surrounding plant roots, plays a crucial role in the fate and behaviour of Cd in the soil–plant system. This study aims to investigate the toxicity of rhizospheric cadmium-contaminated soil and explore the potential of phytoremediation as an environmentally friendly approach to mitigate Cd pollution. The research utilizes a combination of field surveys, laboratory experiments, and plant growth trials to assess the effects of Cd on soil properties, plant growth, and the remediation potential of selected plant species. The results of the field surveys reveal elevated levels of Cd in rhizospheric soils compared to bulk soils, indicating the accumulation and retention of Cd within the rhizosphere. The increased Cd concentration in the rhizosphere has detrimental effects on soil microbial activity, nutrient availability, and plant growth. The accumulation of Cd in crops grown in contaminated soils risks food safety and human health. To mitigate the toxic effects of Cd, phytoremediation, a plant-based remediation technique, is explored. Various plant species known for their Cd accumulation capabilities, such as hyperaccumulators and metal-tolerant plants, are evaluated for their effectiveness in remediating Cd-contaminated soil. The plant’s ability to extract, accumulate, and detoxify Cd is assessed through plant growth parameters, Cd uptake analysis, and anatomical and physiological changes in plant tissues. The findings demonstrate that certain plant species have the potential to remediate Cd-contaminated soils by reducing Cd concentrations and improving soil quality. These plants can accumulate Cd in their tissues, sequester it in the roots, or translocate it to the aboveground biomass. The rhizosphere microbial community is also vital in facilitating Cd uptake, mobilization, and transformation, enhancing phytoremediation efficiency. Overall, this study emphasizes the importance of understanding the toxicity of Cd in rhizospheric soils and highlights the potential of phytoremediation as a sustainable approach for Cd pollution mitigation. The insights gained from this research contribute to developing strategies for effective soil management and selecting suitable plant species for phytoremediation projects to restore Cd-contaminated environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adelodun, B., Adewumi, J. R., Ajala, O. A., Ajibade, F. O., Ajibade, T. F., Akmal, M. H., Aley, P., Arif, M., Arif, M. S., Awasthi, K. K., Azeem, F., Azevedo, L. C. B., Batool, A., Bertini, S. C. B., Bhattacharya, N., Chattopadhyay, I., Chopra, M., da Silva, A. V., da Silva, M. K., … Yasmeen, T. (2022). List of contributors. In A. Kumar, J. Singh, & L. F. R. Ferreira (Eds.), Microbiome under changing climate (pp. xix–xxiv). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90571-8.00028-6 Adelodun, B., Adewumi, J. R., Ajala, O. A., Ajibade, F. O., Ajibade, T. F., Akmal, M. H., Aley, P., Arif, M., Arif, M. S., Awasthi, K. K., Azeem, F., Azevedo, L. C. B., Batool, A., Bertini, S. C. B., Bhattacharya, N., Chattopadhyay, I., Chopra, M., da Silva, A. V., da Silva, M. K., … Yasmeen, T. (2022). List of contributors. In A. Kumar, J. Singh, & L. F. R. Ferreira (Eds.), Microbiome under changing climate (pp. xix–xxiv). Woodhead Publishing. https://​doi.​org/​10.​1016/​B978-0-323-90571-8.​00028-6
3.
4.
Zurück zum Zitat Akhtar, N., Amin-ul Mannan, M., Banik, R. M., Baysal, Ö., Bera, S., Biswas, P., Christina, E., Das, T., Datta, B., Devi, P., Dey, A., Dey, S. R., Dwivedi, P., Han, J., Jayabaskaran, C., Kamalraj, S., Kaur, P., Kumar, P., Kumar, V., … Yashavantha Rao, H. C. (2021). List of contributors. In A. Kumar, J. Singh, & J. Samuel (Eds.), Volatiles and metabolites of microbes (pp. xix–xxi). Academic Press. https://doi.org/10.1016/B978-0-12-824523-1.00028-6 Akhtar, N., Amin-ul Mannan, M., Banik, R. M., Baysal, Ö., Bera, S., Biswas, P., Christina, E., Das, T., Datta, B., Devi, P., Dey, A., Dey, S. R., Dwivedi, P., Han, J., Jayabaskaran, C., Kamalraj, S., Kaur, P., Kumar, P., Kumar, V., … Yashavantha Rao, H. C. (2021). List of contributors. In A. Kumar, J. Singh, & J. Samuel (Eds.), Volatiles and metabolites of microbes (pp. xix–xxi). Academic Press. https://​doi.​org/​10.​1016/​B978-0-12-824523-1.​00028-6
5.
Zurück zum Zitat Alam, S. N., Khalid, Z., Patel, M., Kumari, P., Kumar, A., Singh, B., & Guldhe, A. (2022). Chapter 3—Role of genetic engineering in microbe-assisted phytoremediation of polluted sites (K. Bauddh & Y. Ma (Eds.), Advances in microbe-assisted phytoremediation of polluted sites (pp. 63–84). Elsevier. https://doi.org/10.1016/B978-0-12-823443-3.00008-9 Alam, S. N., Khalid, Z., Patel, M., Kumari, P., Kumar, A., Singh, B., & Guldhe, A. (2022). Chapter 3—Role of genetic engineering in microbe-assisted phytoremediation of polluted sites (K. Bauddh & Y. Ma (Eds.), Advances in microbe-assisted phytoremediation of polluted sites (pp. 63–84). Elsevier. https://​doi.​org/​10.​1016/​B978-0-12-823443-3.​00008-9
9.
Zurück zum Zitat Arunraja, D., Romauld, S. I., Devi, P. B., Thiruvengadam, S., & Kumar, V. (2023). Chapter 29—Genetically engineered microbes for bioremediation and phytoremediation of contaminated environment. In V. Kumar, M. Bilal, S. K. Shahi, & V. K. Garg (Eds.), Metagenomics to bioremediation (Developments in applied microbiology and biotechnology) (pp. 709–721). Academic Press. https://doi.org/10.1016/B978-0-323-96113-4.00039-1 Arunraja, D., Romauld, S. I., Devi, P. B., Thiruvengadam, S., & Kumar, V. (2023). Chapter 29—Genetically engineered microbes for bioremediation and phytoremediation of contaminated environment. In V. Kumar, M. Bilal, S. K. Shahi, & V. K. Garg (Eds.), Metagenomics to bioremediation (Developments in applied microbiology and biotechnology) (pp. 709–721). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-96113-4.​00039-1
11.
14.
Zurück zum Zitat Bhalla, G., Bhalla, B., Kumar, V., & Sharma, A. (2022). Chapter 16—Bioremediation and phytoremediation of pesticides residues from contaminated water: A novel approach. In M. Hadi Dehghani, R. R. Karri, & I. Anastopoulos (Eds.), Pesticides remediation technologies from water and wastewater (pp. 339–363). Elsevier. https://doi.org/10.1016/B978-0-323-90893-1.00016-7 Bhalla, G., Bhalla, B., Kumar, V., & Sharma, A. (2022). Chapter 16—Bioremediation and phytoremediation of pesticides residues from contaminated water: A novel approach. In M. Hadi Dehghani, R. R. Karri, & I. Anastopoulos (Eds.), Pesticides remediation technologies from water and wastewater (pp. 339–363). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-90893-1.​00016-7
16.
Zurück zum Zitat Bhatt, P., Chaudhary, P., Ahmad, S., Bhatt, K., Chandra, D., & Chen, S. (2023). Chapter 2—Recent advances in the application of microbial inoculants in the phytoremediation of xenobiotic compounds. In D. Chandra & P. Bhatt (Eds.), Unravelling plant-microbe synergy (Developments in applied microbiology and biotechnology) (pp. 37–48). Academic Press. https://doi.org/10.1016/B978-0-323-99896-3.00013-8 Bhatt, P., Chaudhary, P., Ahmad, S., Bhatt, K., Chandra, D., & Chen, S. (2023). Chapter 2—Recent advances in the application of microbial inoculants in the phytoremediation of xenobiotic compounds. In D. Chandra & P. Bhatt (Eds.), Unravelling plant-microbe synergy (Developments in applied microbiology and biotechnology) (pp. 37–48). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-99896-3.​00013-8
18.
Zurück zum Zitat Breton-Deval, L., Guevara-García, A., Juarez, K., Lara, P., Rubio-Noguez, D., & Tovar-Sanchez, E. (2022). Chapter 13—Role of rhizosphere microbiome during phytoremediation of heavy metals. In S. Das & H. R. Dash (Eds.), Microbial biodegradation and bioremediation (2nd ed., pp. 263–291). Elsevier. https://doi.org/10.1016/B978-0-323-85455-9.00016-3 Breton-Deval, L., Guevara-García, A., Juarez, K., Lara, P., Rubio-Noguez, D., & Tovar-Sanchez, E. (2022). Chapter 13—Role of rhizosphere microbiome during phytoremediation of heavy metals. In S. Das & H. R. Dash (Eds.), Microbial biodegradation and bioremediation (2nd ed., pp. 263–291). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-85455-9.​00016-3
22.
Zurück zum Zitat Das, T., Saha, S. C., Sunita, K., Majumder, M., Ghorai, M., Mane, A. B., Prasanth, D. A., Kumar, P., Pandey, D. K., Al-Tawaha, A. R., Batiha, G.E.-S., Shekhawat, M. S., Ghosh, A., Sharifi-Rad, J., & Dey, A. (2022). Promising botanical-derived monoamine oxidase (MAO) inhibitors: Pharmacological aspects and structure-activity studies. South African Journal of Botany, 146, 127–145. https://doi.org/10.1016/j.sajb.2021.09.019CrossRef Das, T., Saha, S. C., Sunita, K., Majumder, M., Ghorai, M., Mane, A. B., Prasanth, D. A., Kumar, P., Pandey, D. K., Al-Tawaha, A. R., Batiha, G.E.-S., Shekhawat, M. S., Ghosh, A., Sharifi-Rad, J., & Dey, A. (2022). Promising botanical-derived monoamine oxidase (MAO) inhibitors: Pharmacological aspects and structure-activity studies. South African Journal of Botany, 146, 127–145. https://​doi.​org/​10.​1016/​j.​sajb.​2021.​09.​019CrossRef
23.
Zurück zum Zitat Devi, A., Ferreira, L. F. R., Saratale, G. D., Mulla, S. I., More, N., & Bharagava, R. N. (2022). Chapter 1—Microbe-assisted phytoremediation of environmental contaminants. In K. Bauddh & Y. Ma (Eds.), Advances in microbe-assisted phytoremediation of polluted sites (pp. 3–26). Elsevier. https://doi.org/10.1016/B978-0-12-823443-3.00001-6 Devi, A., Ferreira, L. F. R., Saratale, G. D., Mulla, S. I., More, N., & Bharagava, R. N. (2022). Chapter 1—Microbe-assisted phytoremediation of environmental contaminants. In K. Bauddh & Y. Ma (Eds.), Advances in microbe-assisted phytoremediation of polluted sites (pp. 3–26). Elsevier. https://​doi.​org/​10.​1016/​B978-0-12-823443-3.​00001-6
24.
Zurück zum Zitat Dixit, S., Tracy, P., Vishnoi, N., Swain, A. A., Bauddh, K., & Kumar, M. (2022). Chapter 9—Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fungi. In K. Bauddh & Y. Ma (Eds.), Advances in microbe-assisted phytoremediation of polluted sites (pp. 207–230). Elsevier. https://doi.org/10.1016/B978-0-12-823443-3.00016-8 Dixit, S., Tracy, P., Vishnoi, N., Swain, A. A., Bauddh, K., & Kumar, M. (2022). Chapter 9—Phytoremediation of heavy metal contaminated soil in association with arbuscular mycorrhizal fungi. In K. Bauddh & Y. Ma (Eds.), Advances in microbe-assisted phytoremediation of polluted sites (pp. 207–230). Elsevier. https://​doi.​org/​10.​1016/​B978-0-12-823443-3.​00016-8
26.
Zurück zum Zitat Farooqi, Z. U. R., Hussain, M. M., Ayub, M. A., Qadir, A. A., & Ilic, P. (2022). Chapter 2—Potentially toxic elements and phytoremediation: Opportunities and challenges. In R. A. Bhat, F. M. P. Tonelli, G. H. Dar, & K. Hakeem (Eds.), Phytoremediation (pp. 19–36). Academic Press. https://doi.org/10.1016/B978-0-323-89874-4.00020-0 Farooqi, Z. U. R., Hussain, M. M., Ayub, M. A., Qadir, A. A., & Ilic, P. (2022). Chapter 2—Potentially toxic elements and phytoremediation: Opportunities and challenges. In R. A. Bhat, F. M. P. Tonelli, G. H. Dar, & K. Hakeem (Eds.), Phytoremediation (pp. 19–36). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-89874-4.​00020-0
27.
Zurück zum Zitat Gangola, S., Joshi, S., Bhandari, G., Bhatt, P., Kumar, S., Bhandari, N. S., & Mittal, A. (2023). Chapter 3—Remediation of heavy metals by rhizospheric bacteria and their mechanism of detoxification. In S. Gangola, S. Kumar, S. Joshi, & P. Bhatt (Eds.), Advanced microbial technology for sustainable agriculture and environment (Developments in applied microbiology and biotechnology) (pp. 31–46). Academic Press. https://doi.org/10.1016/B978-0-323-95090-9.00005-4 Gangola, S., Joshi, S., Bhandari, G., Bhatt, P., Kumar, S., Bhandari, N. S., & Mittal, A. (2023). Chapter 3—Remediation of heavy metals by rhizospheric bacteria and their mechanism of detoxification. In S. Gangola, S. Kumar, S. Joshi, & P. Bhatt (Eds.), Advanced microbial technology for sustainable agriculture and environment (Developments in applied microbiology and biotechnology) (pp. 31–46). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-95090-9.​00005-4
40.
Zurück zum Zitat Kumar, M., Bolan, N., Jasemizad, T., Padhye, L. P., Sridharan, S., Singh, L., Bolan, S., O’Connor, J., Zhao, H., Shaheen, S. M., Song, H., Siddique, K. H. M., Wang, H., Kirkham, M. B., & Rinklebe, J. (2022). Mobilization of contaminants: Potential for soil remediation and unintended consequences. Science of the Total Environment, 839, 156373. https://doi.org/10.1016/j.scitotenv.2022.156373CrossRef Kumar, M., Bolan, N., Jasemizad, T., Padhye, L. P., Sridharan, S., Singh, L., Bolan, S., O’Connor, J., Zhao, H., Shaheen, S. M., Song, H., Siddique, K. H. M., Wang, H., Kirkham, M. B., & Rinklebe, J. (2022). Mobilization of contaminants: Potential for soil remediation and unintended consequences. Science of the Total Environment, 839, 156373. https://​doi.​org/​10.​1016/​j.​scitotenv.​2022.​156373CrossRef
43.
Zurück zum Zitat Kumar, P., Kumar, T., Singh, S., Tuteja, N., Prasad, R., & Singh, J. (2020). Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 324, 198–210.CrossRef Kumar, P., Kumar, T., Singh, S., Tuteja, N., Prasad, R., & Singh, J. (2020). Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 324, 198–210.CrossRef
44.
45.
Zurück zum Zitat Kumar, S., Thakur, N., Singh, A. K., Gudade, B. A., Ghimire, D., & Das, S. (2022). 26—Microbes-assisted phytoremediation of contaminated environment: Global status, progress, challenges, and future prospects. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 555–570). Elsevier. https://doi.org/10.1016/B978-0-323-85763-5.00007-6 Kumar, S., Thakur, N., Singh, A. K., Gudade, B. A., Ghimire, D., & Das, S. (2022). 26—Microbes-assisted phytoremediation of contaminated environment: Global status, progress, challenges, and future prospects. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 555–570). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-85763-5.​00007-6
49.
Zurück zum Zitat Kumari, P., Singh, J., & Kumar, P. (2022). Chapter 21—Impact of bioenergy for the diminution of an ascending global variability and change in the climate. In A. Kumar, J. Singh, & L. F. R. Ferreira (Eds.), Microbiome under changing climate (pp. 469–487). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-90571-8.00021-3 Kumari, P., Singh, J., & Kumar, P. (2022). Chapter 21—Impact of bioenergy for the diminution of an ascending global variability and change in the climate. In A. Kumar, J. Singh, & L. F. R. Ferreira (Eds.), Microbiome under changing climate (pp. 469–487). Woodhead Publishing. https://​doi.​org/​10.​1016/​B978-0-323-90571-8.​00021-3
50.
Zurück zum Zitat Kurniawan, S. B., Ramli, N. N., Said, N. S. M., Alias, J., Imron, M. F., Abdullah, S. R. S., Othman, A. R., Purwanti, I. F., & Hasan, H. A. (2022). Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon, 8(4), e08995. https://doi.org/10.1016/j.heliyon.2022.e08995CrossRef Kurniawan, S. B., Ramli, N. N., Said, N. S. M., Alias, J., Imron, M. F., Abdullah, S. R. S., Othman, A. R., Purwanti, I. F., & Hasan, H. A. (2022). Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon, 8(4), e08995. https://​doi.​org/​10.​1016/​j.​heliyon.​2022.​e08995CrossRef
52.
53.
Zurück zum Zitat Li, X., Li, B., Zheng, Y., Luo, L., Qin, X., Yang, Y., & Xu, J. (2022). Physiological and rhizospheric response characteristics to cadmium of a newly identified cadmium accumulator Coreopsis grandiflora Hogg. (Asteraceae). Ecotoxicology and Environmental Safety, 241, 113739. https://doi.org/10.1016/j.ecoenv.2022.113739 Li, X., Li, B., Zheng, Y., Luo, L., Qin, X., Yang, Y., & Xu, J. (2022). Physiological and rhizospheric response characteristics to cadmium of a newly identified cadmium accumulator Coreopsis grandiflora Hogg. (Asteraceae). Ecotoxicology and Environmental Safety, 241, 113739. https://​doi.​org/​10.​1016/​j.​ecoenv.​2022.​113739
56.
Zurück zum Zitat Liu, H., Huang, H., Xie, Y., Liu, Y., Shangguan, Y., & Xu, H. (2023). Integrated biochemical and transcriptomic analysis reveals the effects of Burkholderia sp. SRB-1 on cadmium accumulating in Chrysopogon zizanioides L. under Cd stress. Journal of Environmental Management, 337, 117723. https://doi.org/10.1016/j.jenvman.2023.117723 Liu, H., Huang, H., Xie, Y., Liu, Y., Shangguan, Y., & Xu, H. (2023). Integrated biochemical and transcriptomic analysis reveals the effects of Burkholderia sp. SRB-1 on cadmium accumulating in Chrysopogon zizanioides L. under Cd stress. Journal of Environmental Management, 337, 117723. https://​doi.​org/​10.​1016/​j.​jenvman.​2023.​117723
62.
Zurück zum Zitat Miranda, R. de S., Boechat, C. L., Bomfim, M. R., Santos, J. A. G., Coelho, D. G., Assunção, S. J. R., Cardoso, K. M., & Cardoso, E. B. (2022). 3—Phytoremediation: A sustainable green approach for environmental cleanup. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 49–75). Elsevier. https://doi.org/10.1016/B978-0-323-85763-5.00017-9 Miranda, R. de S., Boechat, C. L., Bomfim, M. R., Santos, J. A. G., Coelho, D. G., Assunção, S. J. R., Cardoso, K. M., & Cardoso, E. B. (2022). 3—Phytoremediation: A sustainable green approach for environmental cleanup. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 49–75). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-85763-5.​00017-9
64.
Zurück zum Zitat Nicolas, G., Alessandro, B., Denis, Z., Silvia, S., & Enrico, D. (2022). Helicrysum italicum (roth) G. Don, a promising species for the phytostabilization of polluted mine sites: A case study in the Montevecchio mine (Sardinia, Italy). Journal of Geochemical Exploration, 242, 107088. https://doi.org/10.1016/j.gexplo.2022.107088 Nicolas, G., Alessandro, B., Denis, Z., Silvia, S., & Enrico, D. (2022). Helicrysum italicum (roth) G. Don, a promising species for the phytostabilization of polluted mine sites: A case study in the Montevecchio mine (Sardinia, Italy). Journal of Geochemical Exploration, 242, 107088. https://​doi.​org/​10.​1016/​j.​gexplo.​2022.​107088
66.
Zurück zum Zitat Ogundola, A. F., Adebayo, E. A., & Ajao, S. O. (2022). 2—Phytoremediation: The ultimate technique for reinstating soil contaminated with heavy metals and other pollutants. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 19–49). Elsevier. https://doi.org/10.1016/B978-0-323-85763-5.00012-X Ogundola, A. F., Adebayo, E. A., & Ajao, S. O. (2022). 2—Phytoremediation: The ultimate technique for reinstating soil contaminated with heavy metals and other pollutants. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 19–49). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-85763-5.​00012-X
68.
73.
75.
Zurück zum Zitat Peera Sheikh Kulsum, P. G., Khanam, R., Das, S., Nayak, A. K., Tack, F. M. G., Meers, E., Vithanage, M., Shahid, M., Kumar, A., Chakraborty, S., Bhattacharya, T., & Biswas, J. K. (2023). A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environmental Research, 220, 115098. https://doi.org/10.1016/j.envres.2022.115098 Peera Sheikh Kulsum, P. G., Khanam, R., Das, S., Nayak, A. K., Tack, F. M. G., Meers, E., Vithanage, M., Shahid, M., Kumar, A., Chakraborty, S., Bhattacharya, T., & Biswas, J. K. (2023). A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environmental Research, 220, 115098. https://​doi.​org/​10.​1016/​j.​envres.​2022.​115098
76.
Zurück zum Zitat Qiao, Y., Hou, D., Lin, Z., Wei, S., Chen, J., Li, J., Zhao, J., Xu, K., Lu, L., & Tian, S. (2023). Sulfur fertilization and water management ensure phytoremediation coupled with argo-production by mediating rhizosphere microbiota in the Oryza sativa L.-Sedum alfredii Hance rotation system. Journal of Hazardous Materials, 457, 131686. https://doi.org/10.1016/j.jhazmat.2023.131686 Qiao, Y., Hou, D., Lin, Z., Wei, S., Chen, J., Li, J., Zhao, J., Xu, K., Lu, L., & Tian, S. (2023). Sulfur fertilization and water management ensure phytoremediation coupled with argo-production by mediating rhizosphere microbiota in the Oryza sativa L.-Sedum alfredii Hance rotation system. Journal of Hazardous Materials, 457, 131686. https://​doi.​org/​10.​1016/​j.​jhazmat.​2023.​131686
77.
Zurück zum Zitat Rabani, M. S., Hameed, I., Mir, T. A., Wani, B. A., Gupta, M. K., Habib, A., Jan, M., Hussain, H., Tripathi, S., Pathak, A., Ahad, M. B., & Gupta, C. (2022). Chapter 5—Microbial-assisted phytoremediation. In R. A. Bhat, F. M. P. Tonelli, G. H. Dar, & K. Hakeem (Eds.), Phytoremediation (pp. 91–114). Academic Press. https://doi.org/10.1016/B978-0-323-89874-4.00006-6 Rabani, M. S., Hameed, I., Mir, T. A., Wani, B. A., Gupta, M. K., Habib, A., Jan, M., Hussain, H., Tripathi, S., Pathak, A., Ahad, M. B., & Gupta, C. (2022). Chapter 5—Microbial-assisted phytoremediation. In R. A. Bhat, F. M. P. Tonelli, G. H. Dar, & K. Hakeem (Eds.), Phytoremediation (pp. 91–114). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-89874-4.​00006-6
78.
79.
Zurück zum Zitat Rahman, S. ur, Khalid, M., Hui, N., Rehman, A., Kayani, S.-I., Fu, X., Zheng, H., Shao, J., Khan, A. A., Ali, M., Taheri, A., Liu, H., Yan, X., Hu, X., Qin, W., Peng, B., Li, M., Xinghao, Y., Zhang, Y., & Tang, K. (2023). Piriformospora indica alter root-associated microbiome structure to enhance Artemisia annua L. tolerance to arsenic. Journal of Hazardous Materials, 457, 131752. https://doi.org/10.1016/j.jhazmat.2023.131752 Rahman, S. ur, Khalid, M., Hui, N., Rehman, A., Kayani, S.-I., Fu, X., Zheng, H., Shao, J., Khan, A. A., Ali, M., Taheri, A., Liu, H., Yan, X., Hu, X., Qin, W., Peng, B., Li, M., Xinghao, Y., Zhang, Y., & Tang, K. (2023). Piriformospora indica alter root-associated microbiome structure to enhance Artemisia annua L. tolerance to arsenic. Journal of Hazardous Materials, 457, 131752. https://​doi.​org/​10.​1016/​j.​jhazmat.​2023.​131752
80.
Zurück zum Zitat Rana, V., Bandyopadhyay, S., & Maiti, S. K. (2022). 8—Potential and prospects of weed plants in phytoremediation and eco-restoration of heavy metals polluted sites. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 187–205). Elsevier. https://doi.org/10.1016/B978-0-323-85763-5.00015-5 Rana, V., Bandyopadhyay, S., & Maiti, S. K. (2022). 8—Potential and prospects of weed plants in phytoremediation and eco-restoration of heavy metals polluted sites. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 187–205). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-85763-5.​00015-5
81.
Zurück zum Zitat Rane, N. R., Tapase, S., Kanojia, A., Watharkar, A., Salama, E.-S., Jang, M., Kumar Yadav, K., Amin, M. A., Cabral-Pinto, M. M. S., Jadhav, J. P., & Jeon, B.-H. (2022). Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment. Bioresource Technology, 344, 126246. https://doi.org/10.1016/j.biortech.2021.126246CrossRef Rane, N. R., Tapase, S., Kanojia, A., Watharkar, A., Salama, E.-S., Jang, M., Kumar Yadav, K., Amin, M. A., Cabral-Pinto, M. M. S., Jadhav, J. P., & Jeon, B.-H. (2022). Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment. Bioresource Technology, 344, 126246. https://​doi.​org/​10.​1016/​j.​biortech.​2021.​126246CrossRef
83.
Zurück zum Zitat Ruley, J. A., Amoding, A., Tumuhairwe, J. B., & Basamba, T. A. (2022). Chapter 14—Rhizoremediation of petroleum hydrocarbon–contaminated soils: A systematic review of mutualism between phytoremediation species and soil living microorganisms. In R. A. Bhat, F. M. P. Tonelli, G. H. Dar, & K. Hakeem (Eds.), Phytoremediation (pp. 263–296). Academic Press. https://doi.org/10.1016/B978-0-323-89874-4.00008-X Ruley, J. A., Amoding, A., Tumuhairwe, J. B., & Basamba, T. A. (2022). Chapter 14—Rhizoremediation of petroleum hydrocarbon–contaminated soils: A systematic review of mutualism between phytoremediation species and soil living microorganisms. In R. A. Bhat, F. M. P. Tonelli, G. H. Dar, & K. Hakeem (Eds.), Phytoremediation (pp. 263–296). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-89874-4.​00008-X
88.
Zurück zum Zitat Sharma, B., Chaudhary, T., & Shukla, P. (2022). Chapter 4—Combinatorial genetic engineering approaches in phytoremediation of pollutants. In P. Sharma, A. Pandey, Y. W. Tong, & H. H. Ngo (Eds.), Current developments in biotechnology and bioengineering (pp. 55–71). Elsevier. https://doi.org/10.1016/B978-0-323-99907-6.00001-3 Sharma, B., Chaudhary, T., & Shukla, P. (2022). Chapter 4—Combinatorial genetic engineering approaches in phytoremediation of pollutants. In P. Sharma, A. Pandey, Y. W. Tong, & H. H. Ngo (Eds.), Current developments in biotechnology and bioengineering (pp. 55–71). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-99907-6.​00001-3
89.
Zurück zum Zitat Sharma, P., Bano, A., Singh, S. P., & Tong, Y. W. (2023). Chapter 4—Metal-tolerant microbial inoculants for improved phytoextraction. In V. K. Sharma, A. Kumar, M. R. Z. Passarini, S. Parmar, & V. K. Singh (Eds.), Microbial inoculants (Developments in applied microbiology and biotechnology) (pp. 75–98). Academic Press. https://doi.org/10.1016/B978-0-323-99043-1.00005-0 Sharma, P., Bano, A., Singh, S. P., & Tong, Y. W. (2023). Chapter 4—Metal-tolerant microbial inoculants for improved phytoextraction. In V. K. Sharma, A. Kumar, M. R. Z. Passarini, S. Parmar, & V. K. Singh (Eds.), Microbial inoculants (Developments in applied microbiology and biotechnology) (pp. 75–98). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-99043-1.​00005-0
96.
Zurück zum Zitat Singh, M., Nanda, K., Singh, V., & Singh, S. P. (2022). Chapter 12—Metal polluted soil detoxification using phytoremediation technology. In P. Sharma, A. Pandey, Y. W. Tong, & H. H. Ngo (Eds.), Current developments in biotechnology and bioengineering (pp. 243–260). Elsevier. https://doi.org/10.1016/B978-0-323-99907-6.00011-6 Singh, M., Nanda, K., Singh, V., & Singh, S. P. (2022). Chapter 12—Metal polluted soil detoxification using phytoremediation technology. In P. Sharma, A. Pandey, Y. W. Tong, & H. H. Ngo (Eds.), Current developments in biotechnology and bioengineering (pp. 243–260). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-99907-6.​00011-6
98.
Zurück zum Zitat Song, L., Xu, X., Zheng, Y., Hong, W., Li, X., Ai, Y., Wang, Y., Zhang, Z., Chen, H., Huang, Y., Zhang, J., & Zhou, J. (2023). Dynamic mechanisms of cadmium accumulation and detoxification by Lolium perenne grown in soil inoculated with the cadmium-tolerant bacterium strain Cdq4-2. Science of the Total Environment, 873, 162314. https://doi.org/10.1016/j.scitotenv.2023.162314CrossRef Song, L., Xu, X., Zheng, Y., Hong, W., Li, X., Ai, Y., Wang, Y., Zhang, Z., Chen, H., Huang, Y., Zhang, J., & Zhou, J. (2023). Dynamic mechanisms of cadmium accumulation and detoxification by Lolium perenne grown in soil inoculated with the cadmium-tolerant bacterium strain Cdq4-2. Science of the Total Environment, 873, 162314. https://​doi.​org/​10.​1016/​j.​scitotenv.​2023.​162314CrossRef
99.
Zurück zum Zitat Sonowal, S., Nava, A. R., Joshi, S. J., Borah, S. N., Islam, N. F., Pandit, S., Prasad, R., & Sarma, H. (2022). Biosurfactant-assisted phytoremediation of potentially toxic elements in soil: Green technology for meeting the United Nations Sustainable Development Goals. Pedosphere, 32(1), 198–210. https://doi.org/10.1016/S1002-0160(21)60067-XCrossRef Sonowal, S., Nava, A. R., Joshi, S. J., Borah, S. N., Islam, N. F., Pandit, S., Prasad, R., & Sarma, H. (2022). Biosurfactant-assisted phytoremediation of potentially toxic elements in soil: Green technology for meeting the United Nations Sustainable Development Goals. Pedosphere, 32(1), 198–210. https://​doi.​org/​10.​1016/​S1002-0160(21)60067-XCrossRef
101.
Zurück zum Zitat Takkar, S., Shandilya, C., Agrahari, R., Chaurasia, A., Vishwakarma, K., Mohapatra, S., Varma, A., & Mishra, A. (2022). 17—Green technology: Phytoremediation for pesticide pollution. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 353–375). Elsevier. https://doi.org/10.1016/B978-0-323-85763-5.00008-8 Takkar, S., Shandilya, C., Agrahari, R., Chaurasia, A., Vishwakarma, K., Mohapatra, S., Varma, A., & Mishra, A. (2022). 17—Green technology: Phytoremediation for pesticide pollution. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 353–375). Elsevier. https://​doi.​org/​10.​1016/​B978-0-323-85763-5.​00008-8
102.
Zurück zum Zitat Tang, S., Xu, Y., Zeng, K., Liang, X., Shi, X., Liu, K., Ma, J., Yu, F., & Li, Y. (2023). Comparative study on plant growth-promoting bacterial inoculation by irrigation and spraying for promoting Bidens pilosa L. phytoremediation of cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 254, 114764. https://doi.org/10.1016/j.ecoenv.2023.114764 Tang, S., Xu, Y., Zeng, K., Liang, X., Shi, X., Liu, K., Ma, J., Yu, F., & Li, Y. (2023). Comparative study on plant growth-promoting bacterial inoculation by irrigation and spraying for promoting Bidens pilosa L. phytoremediation of cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 254, 114764. https://​doi.​org/​10.​1016/​j.​ecoenv.​2023.​114764
104.
Zurück zum Zitat Turan, M., Argin, S., Bolouri, P., Arjumend, T., Ersoy, N., Yıldırım, E., Güneş, A., Ekinci, M., & Birinci, D. (2022). Chapter 11—Bioremediation of contaminated soil with plant growth rhizobium bacteria, In V. Pandey (Ed.), Assisted phytoremediation (pp. 265–284). Elsevier. https://doi.org/10.1016/B978-0-12-822893-7.00013-6 Turan, M., Argin, S., Bolouri, P., Arjumend, T., Ersoy, N., Yıldırım, E., Güneş, A., Ekinci, M., & Birinci, D. (2022). Chapter 11—Bioremediation of contaminated soil with plant growth rhizobium bacteria, In V. Pandey (Ed.), Assisted phytoremediation (pp. 265–284). Elsevier. https://​doi.​org/​10.​1016/​B978-0-12-822893-7.​00013-6
106.
Zurück zum Zitat Veerapagu, M., Jeya, K. R., & Sankaranarayanan, A. (2023). Chapter 2—Role of plant growth-promoting microorganisms in phytoremediation efficiency. In P. Swapnil, M. Meena, Harish, A. Marwal, S. Vijayalakshmi, & A. Zehra (Eds.), Plant-microbe interaction—Recent advances in molecular and biochemical approaches (pp. 45–61). Academic Press. https://doi.org/10.1016/B978-0-323-91875-6.00020-7 Veerapagu, M., Jeya, K. R., & Sankaranarayanan, A. (2023). Chapter 2—Role of plant growth-promoting microorganisms in phytoremediation efficiency. In P. Swapnil, M. Meena, Harish, A. Marwal, S. Vijayalakshmi, & A. Zehra (Eds.), Plant-microbe interaction—Recent advances in molecular and biochemical approaches (pp. 45–61). Academic Press. https://​doi.​org/​10.​1016/​B978-0-323-91875-6.​00020-7
109.
110.
Zurück zum Zitat Yadav, R., Singh, S., Kumar, A., & Singh, A. N. (2022). Chapter 15—Phytoremediation: A wonderful cost-effective tool. In S. Kathi, S. Devipriya, & K. Thamaraiselvi (Eds.), Cost effective technologies for solid waste and wastewater treatment (Advances in environmental pollution research) (pp. 179–208). Elsevier. https://doi.org/10.1016/B978-0-12-822933-0.00008-5 Yadav, R., Singh, S., Kumar, A., & Singh, A. N. (2022). Chapter 15—Phytoremediation: A wonderful cost-effective tool. In S. Kathi, S. Devipriya, & K. Thamaraiselvi (Eds.), Cost effective technologies for solid waste and wastewater treatment (Advances in environmental pollution research) (pp. 179–208). Elsevier. https://​doi.​org/​10.​1016/​B978-0-12-822933-0.​00008-5
113.
Zurück zum Zitat Zeng, X., Yang, Y., Zhang, Q., Zeng, C., Deng, X., Yuan, H., Gong, X., Zou, D., & Zeng, Q. (2023). Field-scale differences in rhizosphere micro-characteristics of Cichorium intybus, Ixeris polycephala, sunflower, and Sedum alfredii in the phytoremediation of Cd-contaminated soil. Ecotoxicology and Environmental Safety, 262, 115137. https://doi.org/10.1016/j.ecoenv.2023.115137CrossRef Zeng, X., Yang, Y., Zhang, Q., Zeng, C., Deng, X., Yuan, H., Gong, X., Zou, D., & Zeng, Q. (2023). Field-scale differences in rhizosphere micro-characteristics of Cichorium intybus, Ixeris polycephala, sunflower, and Sedum alfredii in the phytoremediation of Cd-contaminated soil. Ecotoxicology and Environmental Safety, 262, 115137. https://​doi.​org/​10.​1016/​j.​ecoenv.​2023.​115137CrossRef
114.
Metadaten
Titel
Toxicity of Rhizospheric Cadmium Contaminated Soil and Its Phytoremediation
verfasst von
Prasann Kumar
Debjani Choudhury
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-54005-9_10