Skip to main content
Erschienen in: Journal of Materials Science 17/2021

08.03.2021 | Computation & theory

Tracking CO2 capture and separation over N2 in a flexible metal–organic framework: insights from GCMC and DFT simulations

verfasst von: Xuefeng Liu, Maohuai Wang, Sainan Zhou, Jiahui Wang, Huili Xin, Shuxian Wei, Siyuan Liu, Zhaojie Wang, Xiaoqing Lu

Erschienen in: Journal of Materials Science | Ausgabe 17/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Investigations on the structural transition and property of the intermediate structures are significant to understand the gas adsorption and separation performance in flexible metal–organic frameworks (MOFs). Herein, theoretical investigations were conducted to track CO2/N2 adsorption and separation in the flexible bridged phenyl MOF 1. Results showed the closed pore form 1B expanded and exhibited the intermediate states of 1B_x (x = 9.8, 10.34, 11.3, 12.5, and 14.1) with the adsorption of CO2. The adsorption performance–structure–pressure relationship was built based on the adsorption isotherms, and 1B_9.8, 1B_10.34, 1B_11.3, 1B_12.5, and 1B_14.1 were the structures of 1B with adsorbed CO2 at 26.3, 29.2, 29.5, 33.7, and 37.1 bar at 298 K, respectively. The CO2/N2 selectivity was plotted based on the structure–pressure relationship. The interaction and gas distribution analyses demonstrated that the adsorption site changed during the structural transition in the adsorption process, which played a significant role in CO2 adsorption and separation. This work provided significant guidelines for elucidating the gas adsorption and separation in flexible adsorbent materials.

Graphical abstract

Changing processes in CO2 adsorption and separation over N2 were traced along structural transition of the flexible MOF framework, and the synergistic effect of adsorption site and pore volume was elucidated via systematic analyses on pore characteristics, CO2/N2 adsorption capacity, selectivity, interaction, and gas distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443CrossRef Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443CrossRef
2.
Zurück zum Zitat Lyngfelt A (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189CrossRef Lyngfelt A (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189CrossRef
3.
Zurück zum Zitat Wang MH, Zhang ZY, Gong YQ, Zhou SN, Wang JH, Wang ZJ, Wei SX, Guo WY, Lu XQ (2020) Penta-graphene as a promising controllable CO2 capture and separation material in an electric field. Appl Surf Sci 502:144067CrossRef Wang MH, Zhang ZY, Gong YQ, Zhou SN, Wang JH, Wang ZJ, Wei SX, Guo WY, Lu XQ (2020) Penta-graphene as a promising controllable CO2 capture and separation material in an electric field. Appl Surf Sci 502:144067CrossRef
4.
Zurück zum Zitat Wang MH, Wei SX, Wu ZH, Zhou SN, Wang ZJ, Wang JH, Lu XQ (2018) Alkyl amine functionalized triphenylamine-based covalent organic frameworks for high-efficiency CO2 capture and separation over N2. Mater Lett 230:28–31CrossRef Wang MH, Wei SX, Wu ZH, Zhou SN, Wang ZJ, Wang JH, Lu XQ (2018) Alkyl amine functionalized triphenylamine-based covalent organic frameworks for high-efficiency CO2 capture and separation over N2. Mater Lett 230:28–31CrossRef
5.
Zurück zum Zitat Lu XQ, Jin DL, Wei SX, Wang ZJ, An CH, Guo WY (2015) Strategies to enhance CO2 capture and separation based on engineering absorbent materials. J Mater Chem A 3:12118–12132CrossRef Lu XQ, Jin DL, Wei SX, Wang ZJ, An CH, Guo WY (2015) Strategies to enhance CO2 capture and separation based on engineering absorbent materials. J Mater Chem A 3:12118–12132CrossRef
6.
Zurück zum Zitat Lu XQ, Jin DL, Wei SX, Zhang MM, Zhu Q, Shi XF, Deng ZG, Guo WY, Shen WZ (2015) Competitive adsorption of a binary CO2–CH4 mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale 7:1002–1012CrossRef Lu XQ, Jin DL, Wei SX, Zhang MM, Zhu Q, Shi XF, Deng ZG, Guo WY, Shen WZ (2015) Competitive adsorption of a binary CO2–CH4 mixture in nanoporous carbons: effects of edge-functionalization. Nanoscale 7:1002–1012CrossRef
7.
Zurück zum Zitat Krause S, Bon V, Senkovska I, Stoeck U, Wallacher D, Tobbens DM, Zander S, Pillai RS, Maurin G, Coudert F (2016) A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532:348–352CrossRef Krause S, Bon V, Senkovska I, Stoeck U, Wallacher D, Tobbens DM, Zander S, Pillai RS, Maurin G, Coudert F (2016) A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532:348–352CrossRef
8.
Zurück zum Zitat Banerjee A, Nandi S, Nasa P, Vaidhyanathan R (2016) Enhancing the carbon capture capacities of a rigid ultra-microporous MOF through gate-opening at low CO2 pressures assisted by swiveling oxalate pillars. Chem Commun 52:1851–1854CrossRef Banerjee A, Nandi S, Nasa P, Vaidhyanathan R (2016) Enhancing the carbon capture capacities of a rigid ultra-microporous MOF through gate-opening at low CO2 pressures assisted by swiveling oxalate pillars. Chem Commun 52:1851–1854CrossRef
9.
Zurück zum Zitat Tseng T, Lee L, Luo T, Chien P, Liu Y, Lee S, Wang C, Lu K (2017) Gate-opening upon CO2 adsorption on a metal–organic framework that mimics a natural stimuli-response system. Dalton Trans 46:14728–14732CrossRef Tseng T, Lee L, Luo T, Chien P, Liu Y, Lee S, Wang C, Lu K (2017) Gate-opening upon CO2 adsorption on a metal–organic framework that mimics a natural stimuli-response system. Dalton Trans 46:14728–14732CrossRef
10.
Zurück zum Zitat Kim H, Huh S, Lee DN, Kim Y (2018) Selective carbon dioxide sorption by a new breathing three-dimensional Zn-MOF with Lewis basic nitrogen-rich channels. Dalton Trans 47:4820–4826CrossRef Kim H, Huh S, Lee DN, Kim Y (2018) Selective carbon dioxide sorption by a new breathing three-dimensional Zn-MOF with Lewis basic nitrogen-rich channels. Dalton Trans 47:4820–4826CrossRef
11.
Zurück zum Zitat Alhamami M, Doan H, Cheng C-H (2014) A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption. Materials (Basel) 7:3198–3250CrossRef Alhamami M, Doan H, Cheng C-H (2014) A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption. Materials (Basel) 7:3198–3250CrossRef
12.
Zurück zum Zitat Bigdeli F, Lollar CT, Morsali A, Zhou H-C (2020) Switching in metal–organic frameworks. Angew Chem Int Ed 59:4652–4669CrossRef Bigdeli F, Lollar CT, Morsali A, Zhou H-C (2020) Switching in metal–organic frameworks. Angew Chem Int Ed 59:4652–4669CrossRef
13.
Zurück zum Zitat Wang MH, Zhou SN, Cao SF, Wang ZJ, Liu SY, Wei SX, Chen Y, Lu XQ (2020) Stimulus-responsive adsorbent materials for CO2 capture and separation. J Mater Chem A 8:10519–10533CrossRef Wang MH, Zhou SN, Cao SF, Wang ZJ, Liu SY, Wei SX, Chen Y, Lu XQ (2020) Stimulus-responsive adsorbent materials for CO2 capture and separation. J Mater Chem A 8:10519–10533CrossRef
14.
Zurück zum Zitat Coudert F, Jeffroy M, Fuchs AH, Boutin A, Mellotdraznieks C (2008) Thermodynamics of guest-induced structural transitions in hybrid organic−inorganic frameworks. J Am Chem Soc 130:14294–14302CrossRef Coudert F, Jeffroy M, Fuchs AH, Boutin A, Mellotdraznieks C (2008) Thermodynamics of guest-induced structural transitions in hybrid organic−inorganic frameworks. J Am Chem Soc 130:14294–14302CrossRef
15.
Zurück zum Zitat Neimark AV, Coudert F, Boutin A, Fuchs AH (2010) Stress-based model for the breathing of metal−organic frameworks. J Phys Chem Lett 1:445–449CrossRef Neimark AV, Coudert F, Boutin A, Fuchs AH (2010) Stress-based model for the breathing of metal−organic frameworks. J Phys Chem Lett 1:445–449CrossRef
16.
Zurück zum Zitat Mukherjee G, Biradha K (2014) Modulation of breathing behavior of layered coordination polymers via a solid solution approach: the influence of metal ions on sorption behavior. Chem Commun 50:670–672CrossRef Mukherjee G, Biradha K (2014) Modulation of breathing behavior of layered coordination polymers via a solid solution approach: the influence of metal ions on sorption behavior. Chem Commun 50:670–672CrossRef
17.
Zurück zum Zitat Engel ER, Jouaiti A, Bezuidenhout CX, Hosseini MW, Barbour LJ (2017) Activation-dependent breathing in a flexible metal-organic framework and the effects of repeated sorption/desorption cycling. Angew Chem Int Ed 56:8874–8878CrossRef Engel ER, Jouaiti A, Bezuidenhout CX, Hosseini MW, Barbour LJ (2017) Activation-dependent breathing in a flexible metal-organic framework and the effects of repeated sorption/desorption cycling. Angew Chem Int Ed 56:8874–8878CrossRef
18.
Zurück zum Zitat Limas NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2 Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6:45727–45747CrossRef Limas NG, Manz TA (2016) Introducing DDEC6 atomic population analysis: part 2 Computed results for a wide range of periodic and nonperiodic materials. RSC Adv 6:45727–45747CrossRef
19.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
20.
Zurück zum Zitat Chen XF, Jia SL, Ding N, Shi JB, Wang ZH (2016) Capture of aromatic organic pollutants by hexagonal boron nitride nanosheets: density functional theoretical and molecular dynamic investigation. Environ Sci: Nano 3:1493–1503 Chen XF, Jia SL, Ding N, Shi JB, Wang ZH (2016) Capture of aromatic organic pollutants by hexagonal boron nitride nanosheets: density functional theoretical and molecular dynamic investigation. Environ Sci: Nano 3:1493–1503
21.
Zurück zum Zitat Wang MH, Wang ZJ, Zhou SN, Wang JH, Liu SY, Wei SX, Guo WY, Lu XQ (2019) Strain-controlled carbon nitride: a continuously tunable membrane for gas separation. Appl Surf Sci 506:144675CrossRef Wang MH, Wang ZJ, Zhou SN, Wang JH, Liu SY, Wei SX, Guo WY, Lu XQ (2019) Strain-controlled carbon nitride: a continuously tunable membrane for gas separation. Appl Surf Sci 506:144675CrossRef
22.
Zurück zum Zitat Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRef Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035CrossRef
23.
Zurück zum Zitat Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909CrossRef Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94:8897–8909CrossRef
24.
Zurück zum Zitat Sun Y, Spellmeyer D, Pearlman DA, Kollman P (1992) Simulation of the solvation free energies for methane, ethane, and propane and corresponding amino acid dipeptides: a critical test of the bond-PMF correction, a new set of hydrocarbon parameters, and the gas phase-water hydrophobicity scale. J Am Chem Soc 114:6798–6801CrossRef Sun Y, Spellmeyer D, Pearlman DA, Kollman P (1992) Simulation of the solvation free energies for methane, ethane, and propane and corresponding amino acid dipeptides: a critical test of the bond-PMF correction, a new set of hydrocarbon parameters, and the gas phase-water hydrophobicity scale. J Am Chem Soc 114:6798–6801CrossRef
25.
Zurück zum Zitat Potoff JJ, Siepmann JI (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J 47:1676–1682CrossRef Potoff JJ, Siepmann JI (2001) Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J 47:1676–1682CrossRef
26.
Zurück zum Zitat Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2016) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul 42:81–101CrossRef Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2016) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul 42:81–101CrossRef
27.
Zurück zum Zitat Ongari D, Boyd PG, Barthel S, Witman M, Haranczyk M, Smit B (2017) Accurate characterization of the pore volume in microporous crystalline materials. Langmuir 33:14529–14538CrossRef Ongari D, Boyd PG, Barthel S, Witman M, Haranczyk M, Smit B (2017) Accurate characterization of the pore volume in microporous crystalline materials. Langmuir 33:14529–14538CrossRef
28.
Zurück zum Zitat Martin RL, Haranczyk M (2014) Construction and characterization of structure models of crystalline porous polymers. Cryst Growth Des 14:2431–2440CrossRef Martin RL, Haranczyk M (2014) Construction and characterization of structure models of crystalline porous polymers. Cryst Growth Des 14:2431–2440CrossRef
29.
Zurück zum Zitat Xu Q, Liu D, Yang Q, Zhong C, Mi J (2010) Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity. J Mater Chem 20:706–714CrossRef Xu Q, Liu D, Yang Q, Zhong C, Mi J (2010) Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity. J Mater Chem 20:706–714CrossRef
30.
Zurück zum Zitat Babarao R, Rubio-Martinez M, Hill MR, Thornton AW (2016) Interpenetrated zirconium–organic frameworks: small cavities versus functionalization for CO2 capture. J Phys Chem C 120:13013–13023CrossRef Babarao R, Rubio-Martinez M, Hill MR, Thornton AW (2016) Interpenetrated zirconium–organic frameworks: small cavities versus functionalization for CO2 capture. J Phys Chem C 120:13013–13023CrossRef
31.
Zurück zum Zitat Zhou SN, Guo C, Wu ZH, Wang MH, Wang ZJ, Wei SX, Li SR, Lu XQ (2017) Edge-functionalized nanoporous carbons for high adsorption capacity and selectivity of CO2 over N2. Appl Surf Sci 410:259–266CrossRef Zhou SN, Guo C, Wu ZH, Wang MH, Wang ZJ, Wei SX, Li SR, Lu XQ (2017) Edge-functionalized nanoporous carbons for high adsorption capacity and selectivity of CO2 over N2. Appl Surf Sci 410:259–266CrossRef
32.
Zurück zum Zitat Liu XF, Wei SX, Zhou SN, Wu ZH, Wang MH, Wang ZJ, Wang JH, Lu XQ (2018) Li-modified nanoporous carbons for high-performance adsorption and separation of CO2 over N2: a combined DFT and GCMC computational study. J Co2 Util 26:588–594CrossRef Liu XF, Wei SX, Zhou SN, Wu ZH, Wang MH, Wang ZJ, Wang JH, Lu XQ (2018) Li-modified nanoporous carbons for high-performance adsorption and separation of CO2 over N2: a combined DFT and GCMC computational study. J Co2 Util 26:588–594CrossRef
33.
Zurück zum Zitat Liu Y, Wilcox J (2013) Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications. Environ Sci Technol 47:95–101CrossRef Liu Y, Wilcox J (2013) Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications. Environ Sci Technol 47:95–101CrossRef
34.
Zurück zum Zitat Salles F, Ghoufi A, Maurin G, Bell RG, Mellot-Draznieks C, Férey G (2008) Molecular dynamics simulations of breathing MOFs: Structural transformations of MIL-53 (Cr) upon thermal activation and CO2 adsorption. Angew Chem Int Ed 47:8487–8491CrossRef Salles F, Ghoufi A, Maurin G, Bell RG, Mellot-Draznieks C, Férey G (2008) Molecular dynamics simulations of breathing MOFs: Structural transformations of MIL-53 (Cr) upon thermal activation and CO2 adsorption. Angew Chem Int Ed 47:8487–8491CrossRef
35.
Zurück zum Zitat Zheng J-J, Kusaka S, Matsuda R, Kitagawa S, Sakaki S (2018) Theoretical insight into gate-opening adsorption mechanism and sigmoidal adsorption isotherm into porous coordination polymer. J Am Chem Soc 140:13958–13969CrossRef Zheng J-J, Kusaka S, Matsuda R, Kitagawa S, Sakaki S (2018) Theoretical insight into gate-opening adsorption mechanism and sigmoidal adsorption isotherm into porous coordination polymer. J Am Chem Soc 140:13958–13969CrossRef
36.
Zurück zum Zitat Bakhshian S, Sahimi M (2018) Theoretical model and numerical simulation of adsorption and deformation in flexible metal–organic frameworks. J Phys Chem C 122:9465–9473CrossRef Bakhshian S, Sahimi M (2018) Theoretical model and numerical simulation of adsorption and deformation in flexible metal–organic frameworks. J Phys Chem C 122:9465–9473CrossRef
Metadaten
Titel
Tracking CO2 capture and separation over N2 in a flexible metal–organic framework: insights from GCMC and DFT simulations
verfasst von
Xuefeng Liu
Maohuai Wang
Sainan Zhou
Jiahui Wang
Huili Xin
Shuxian Wei
Siyuan Liu
Zhaojie Wang
Xiaoqing Lu
Publikationsdatum
08.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05970-7

Weitere Artikel der Ausgabe 17/2021

Journal of Materials Science 17/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.