Skip to main content
Erschienen in: Intelligent Service Robotics 4/2013

01.10.2013 | Original Research

Tracking control of a nonholonomic mobile robot using compound cosine function neural networks

verfasst von: Jun Ye

Erschienen in: Intelligent Service Robotics | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this paper is to propose a compound cosine function neural network with continuous learning algorithm for the velocity and orientation angle tracking control of a nonholonomic mobile robot with nonlinear disturbances. Herein, two neural network (NN) controllers embedded in the closed-loop control system have the simple continuous learning and rapid convergence capability without the dynamics information of the mobile robot to realize the adaptive control of the mobile robot. The neuron function of the hidden layer in the three-layer feed-forward network structure is on the basis of combining a cosine function with a unipolar sigmoid function. The developed neural network controllers have simple algorithm and fast learning convergence because the weight values are only adjusted between the nodes in hidden layer and the output nodes, while the weight values between the input layer and the hidden layer are one, i.e. constant, without the weight adjustment. Therefore, the main advantages of this control system are the real-time control capability and the robustness by use of the proposed neural network controllers for a nonholonomic mobile robot with nonlinear disturbances. Through simulation experiments applied to the nonholonomic mobile robot with the nonlinear disturbances which are considered as dynamics uncertainty and external disturbances, the simulation results show that the proposed NN control system of nonholonomic mobile robots has real-time control capability, better robustness and higher control precision. The compound cosine function neural network provides us with a new way to solve tracking control problems for mobile robots.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Canudas de Wit C, Khennouf H, Samson C, Sordalen OJ (1993) Nonlinear control design for mobile robots. In: Zheng YF (ed) Recent Trends in Mobile Robots, vol 11. World Scientific, Singapore, pp 121–156 Canudas de Wit C, Khennouf H, Samson C, Sordalen OJ (1993) Nonlinear control design for mobile robots. In: Zheng YF (ed) Recent Trends in Mobile Robots, vol 11. World Scientific, Singapore, pp 121–156
2.
Zurück zum Zitat Ye J (2008) Tracking control for nonholonomic mobiles: integrating the analog neural network into the backstepping technique. Neurocomputing 71:3373–3378CrossRef Ye J (2008) Tracking control for nonholonomic mobiles: integrating the analog neural network into the backstepping technique. Neurocomputing 71:3373–3378CrossRef
3.
Zurück zum Zitat Yang JM, Kim JH (1999) Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans Robot Autom 15:578–587CrossRef Yang JM, Kim JH (1999) Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans Robot Autom 15:578–587CrossRef
4.
Zurück zum Zitat Fukao T, Nakagawa H, Adachi N (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Robot Autom 16:609–615CrossRef Fukao T, Nakagawa H, Adachi N (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Robot Autom 16:609–615CrossRef
5.
Zurück zum Zitat Pourboghrat F, Karlsson MP (2000) Adaptive control of dynamic mobile robots with nonholonomic constraints. Comput Electr Eng 28:241–253CrossRef Pourboghrat F, Karlsson MP (2000) Adaptive control of dynamic mobile robots with nonholonomic constraints. Comput Electr Eng 28:241–253CrossRef
6.
Zurück zum Zitat Oriolo G, Luca AD, Vendittelli M (2002) WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans Control Syst Technol 10:835–852CrossRef Oriolo G, Luca AD, Vendittelli M (2002) WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans Control Syst Technol 10:835–852CrossRef
7.
Zurück zum Zitat Das T, Kar IN, Chaudhury S (2006) Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics. Neurocomputing 69:2140–2151CrossRef Das T, Kar IN, Chaudhury S (2006) Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics. Neurocomputing 69:2140–2151CrossRef
8.
Zurück zum Zitat Ye J (2008) Adaptive control of nonlinear PID-based analog neural network for a nonholonomic mobile robot. Neurocomputing 71:1561–1565CrossRef Ye J (2008) Adaptive control of nonlinear PID-based analog neural network for a nonholonomic mobile robot. Neurocomputing 71:1561–1565CrossRef
9.
Zurück zum Zitat Hu T, Yang S (2001) A novel tracking control method for a wheeled mobile robot. In: Proceedings of 2nd Workshop on Computational Kinematics. Seoul, Korea, pp 104–116 Hu T, Yang S (2001) A novel tracking control method for a wheeled mobile robot. In: Proceedings of 2nd Workshop on Computational Kinematics. Seoul, Korea, pp 104–116
10.
Zurück zum Zitat Fierro R, Lewis FL (1998) Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Netw 9(4):389–400CrossRef Fierro R, Lewis FL (1998) Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Netw 9(4):389–400CrossRef
11.
Zurück zum Zitat Hu T, Yang SX, Wang F, Mittal GS (2002) A neural network controller for a nonholonomic mobile robot with unknown robot parameters. In: Proceedings of IEEE International Conference on Robotics and Automation. Washington, DC, pp 3540–3545 Hu T, Yang SX, Wang F, Mittal GS (2002) A neural network controller for a nonholonomic mobile robot with unknown robot parameters. In: Proceedings of IEEE International Conference on Robotics and Automation. Washington, DC, pp 3540–3545
12.
Zurück zum Zitat Park BS, Yoo SJ, Park JB, Choi YH (2009) Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans Control Syst Technol 17(1):207–214CrossRef Park BS, Yoo SJ, Park JB, Choi YH (2009) Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans Control Syst Technol 17(1):207–214CrossRef
13.
Zurück zum Zitat Mohareri O, Dhaouadi R, Rad AB (2012) Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88:54–66CrossRef Mohareri O, Dhaouadi R, Rad AB (2012) Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88:54–66CrossRef
14.
Zurück zum Zitat Li Y, Zhu L, Sun M (2013) Adaptive neural-network control of mobile robot formations including actuator dynamics. Appl Mech Mater 303–306:1768–1773CrossRef Li Y, Zhu L, Sun M (2013) Adaptive neural-network control of mobile robot formations including actuator dynamics. Appl Mech Mater 303–306:1768–1773CrossRef
Metadaten
Titel
Tracking control of a nonholonomic mobile robot using compound cosine function neural networks
verfasst von
Jun Ye
Publikationsdatum
01.10.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 4/2013
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-013-0136-4

Weitere Artikel der Ausgabe 4/2013

Intelligent Service Robotics 4/2013 Zur Ausgabe

Neuer Inhalt