Skip to main content
Erschienen in: Wireless Networks 4/2019

10.07.2018

Training size optimization with reduced complexity in cell-free massive MIMO system

verfasst von: Sayeid M. Sahid Ullah, Wan Amirul Mahyiddin, Nur Azira Zakaria, Tarik Abdul Latef, Kamarul Ariffin Noordin, Kaharudin Dimyati

Erschienen in: Wireless Networks | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Training sequence is used in multiple antenna systems to estimate channel state information and mitigate channel distortion between transmitter and receiver. However, the training sequence or pilot must be limited to a certain size in order to reduce the impact of overhead loss due to limited channel coherence length in mobile users. In this paper, we proposed to use training size optimization in cell-free massive MIMO system. In addition, we proposed and compared the performance of different training size optimization algorithms, namely exhaustive search optimization, bisection optimization and min–max optimization, with each method has different level of calculation complexities. The results showed that in general, all of the 3 training length optimization methods improved the downlink rate compared to the conventional pilot length method. We also showed that the training optimization methods are more effective when the coherence length is small or the number of users is very large. In the case of large number of users or small coherence length, the exhaustive search has the best median downlink rate, followed closely by min–max optimum and finally the bisection method. Even though the exhaustive search optimization has the best downlink rate, we showed that the proposed reduce optimization complexity methods has significantly less calculation complexity. In addition, the median downlink rate performance of min–max optimization method is only slightly less than that of the exhaustive search method for various number of users and coherence length.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30, 40–60.CrossRef Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30, 40–60.CrossRef
2.
Zurück zum Zitat Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52, 186–195.CrossRef Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52, 186–195.CrossRef
3.
Zurück zum Zitat Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8, 742–758.CrossRef Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8, 742–758.CrossRef
4.
Zurück zum Zitat Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16, 1834–1850.CrossRef Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16, 1834–1850.CrossRef
5.
Zurück zum Zitat Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2015). Cell-free massive MIMO: Uniformly great service for everyone. In Proceedings of IEEE international workshop signal processing advanced wireless communications (SPAWC), Stockholm, Sweden, pp. 201–205. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2015). Cell-free massive MIMO: Uniformly great service for everyone. In Proceedings of IEEE international workshop signal processing advanced wireless communications (SPAWC), Stockholm, Sweden, pp. 201–205.
6.
Zurück zum Zitat Heath, R. W., Jr., Wu, T., Kwon, Y. H., & Soong, A. C. K. (2011). Multiuser MIMO in distributed antenna systems with out-of-cell interference. IEEE Transactions on Signal Processing, 59(10), 4885–4899.MathSciNetCrossRefMATH Heath, R. W., Jr., Wu, T., Kwon, Y. H., & Soong, A. C. K. (2011). Multiuser MIMO in distributed antenna systems with out-of-cell interference. IEEE Transactions on Signal Processing, 59(10), 4885–4899.MathSciNetCrossRefMATH
7.
Zurück zum Zitat Feng, W., Wang, Y., Ge, N., Lu, J., & Zhang, J. (2013). Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT. IEEE Journal on Selected Areas in Communications, 31, 2067–2081.CrossRef Feng, W., Wang, Y., Ge, N., Lu, J., & Zhang, J. (2013). Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT. IEEE Journal on Selected Areas in Communications, 31, 2067–2081.CrossRef
8.
Zurück zum Zitat Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2018). Interference-alignment and soft-space-reuse based cooperative transmission for multi-cell massive MIMO networks. IEEE Transactions on Wireless Communications, 17(3), 1907–1922.CrossRef Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2018). Interference-alignment and soft-space-reuse based cooperative transmission for multi-cell massive MIMO networks. IEEE Transactions on Wireless Communications, 17(3), 1907–1922.CrossRef
9.
Zurück zum Zitat Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2017). Base station selection for massive MIMO networks with two-stage precoding. IEEE Wireless Communications Letters, 6(5), 598–601.CrossRef Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2017). Base station selection for massive MIMO networks with two-stage precoding. IEEE Wireless Communications Letters, 6(5), 598–601.CrossRef
10.
Zurück zum Zitat Ma, J., Zhang, S., Li, H., Zhao, N., & Nallanathan, A. (2017). Pattern division for massive MIMO networks with two-stage precoding. IEEE Communications Letters, 21(7), 1665–1668.CrossRef Ma, J., Zhang, S., Li, H., Zhao, N., & Nallanathan, A. (2017). Pattern division for massive MIMO networks with two-stage precoding. IEEE Communications Letters, 21(7), 1665–1668.CrossRef
11.
Zurück zum Zitat Buzzi, S., & D’Andrea, C. (2017). Cell-free massive MIMO: User-centric approach. IEEE Wireless Communications Letters, 6(6), 706–709.CrossRef Buzzi, S., & D’Andrea, C. (2017). Cell-free massive MIMO: User-centric approach. IEEE Wireless Communications Letters, 6(6), 706–709.CrossRef
12.
Zurück zum Zitat Bashar, M., Cumanan, K., Burr, A. G., Ngo, H. Q., & Debbah, M. (2018). Cell-free massive MIMO with limited backhaul. In Proceeding of IEEE ICC, pp. 1–7. Bashar, M., Cumanan, K., Burr, A. G., Ngo, H. Q., & Debbah, M. (2018). Cell-free massive MIMO with limited backhaul. In Proceeding of IEEE ICC, pp. 1–7.
13.
Zurück zum Zitat Nguyen, T. H., Nguyen, T. K., Han, H. D., & Nguyen, V. D. Optimal power control and load balancing for uplink cell-free multi-user massive MIMO. In IEEE access, Vol. PP, No. 99, pp. 1–1. Nguyen, T. H., Nguyen, T. K., Han, H. D., & Nguyen, V. D. Optimal power control and load balancing for uplink cell-free multi-user massive MIMO. In IEEE access, Vol. PP, No. 99, pp. 1–1.
14.
Zurück zum Zitat Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2018). On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Communications and Networking, 2(1), 25–39.CrossRef Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2018). On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Communications and Networking, 2(1), 25–39.CrossRef
15.
Zurück zum Zitat Nguyen, L. D., Duong, T. Q., Ngo, H. Q., & Tourki, K. (2017). Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Communications Letters, 21(8), 1871–1874.CrossRef Nguyen, L. D., Duong, T. Q., Ngo, H. Q., & Tourki, K. (2017). Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Communications Letters, 21(8), 1871–1874.CrossRef
16.
Zurück zum Zitat Marzetta, T. L., & Hochwald, B. M. (1999). Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Transactions on Information Theory, 45, 139–157.MathSciNetCrossRefMATH Marzetta, T. L., & Hochwald, B. M. (1999). Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Transactions on Information Theory, 45, 139–157.MathSciNetCrossRefMATH
17.
Zurück zum Zitat Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9, 3590–3600.CrossRef Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9, 3590–3600.CrossRef
18.
Zurück zum Zitat Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10, 2640–2651.CrossRef Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10, 2640–2651.CrossRef
19.
Zurück zum Zitat Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31, 160–171.CrossRef Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31, 160–171.CrossRef
20.
Zurück zum Zitat Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61, 1436–1449.CrossRef Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61, 1436–1449.CrossRef
21.
Zurück zum Zitat Ma, X., Yang, L., & Giannakis, G. B. (2005). Optimal training for MIMO frequency-selective fading channels. IEEE Transactions on Wireless Communications, 4(2), 453–466.CrossRef Ma, X., Yang, L., & Giannakis, G. B. (2005). Optimal training for MIMO frequency-selective fading channels. IEEE Transactions on Wireless Communications, 4(2), 453–466.CrossRef
22.
Zurück zum Zitat Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Optimal channel training in uplink network MIMO systems. IEEE Transactions on Signal Processing, 59(6), 2824–2833.MathSciNetCrossRefMATH Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Optimal channel training in uplink network MIMO systems. IEEE Transactions on Signal Processing, 59(6), 2824–2833.MathSciNetCrossRefMATH
23.
Zurück zum Zitat Savazzi, S., & Spagnolini, U. (2009). Optimizing training lengths and training intervals in time-varying fading channels. IEEE Transactions on Signal Processing, 57(3), 1098–1112.MathSciNetCrossRefMATH Savazzi, S., & Spagnolini, U. (2009). Optimizing training lengths and training intervals in time-varying fading channels. IEEE Transactions on Signal Processing, 57(3), 1098–1112.MathSciNetCrossRefMATH
24.
Zurück zum Zitat Sheng, Z., Tuan, H. D., Nguyen, H. H., & Debbah, M. (2017). Optimal training sequences for large-scale MIMO-OFDM systems. IEEE Transactions on Signal Processing, 65(13), 3329–3343.MathSciNetCrossRefMATH Sheng, Z., Tuan, H. D., Nguyen, H. H., & Debbah, M. (2017). Optimal training sequences for large-scale MIMO-OFDM systems. IEEE Transactions on Signal Processing, 65(13), 3329–3343.MathSciNetCrossRefMATH
25.
Zurück zum Zitat Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2016). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20(7), 1465–1468. Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2016). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20(7), 1465–1468.
26.
Zurück zum Zitat Huh, H., Moon, S. H., Kim, Y. T., Lee, I., & Caire, G. (2011). Multi-cell MIMO downlink with cell cooperation and fair scheduling: A large-system limit analysis. IEEE Transactions on Information Theory, 57(12), 7771–7786.MathSciNetCrossRefMATH Huh, H., Moon, S. H., Kim, Y. T., Lee, I., & Caire, G. (2011). Multi-cell MIMO downlink with cell cooperation and fair scheduling: A large-system limit analysis. IEEE Transactions on Information Theory, 57(12), 7771–7786.MathSciNetCrossRefMATH
27.
Zurück zum Zitat Chen, D. C., Quek, T. Q. S., & Kountouris, M. (2015). Backhauling in heterogeneous cellular networks: Modeling and tradeoffs. IEEE Transactions on Wireless Communications, 14(6), 3194–3206.CrossRef Chen, D. C., Quek, T. Q. S., & Kountouris, M. (2015). Backhauling in heterogeneous cellular networks: Modeling and tradeoffs. IEEE Transactions on Wireless Communications, 14(6), 3194–3206.CrossRef
28.
Zurück zum Zitat Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef
29.
Zurück zum Zitat Rappaport, T. S. (2002). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice-Hall Inc.MATH Rappaport, T. S. (2002). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice-Hall Inc.MATH
30.
Zurück zum Zitat Burden, R. L., & Faires, J. D. (1985). Numerical analysis (3rd ed.). Boston, MA: Prindle, Weber & Schmidt.MATH Burden, R. L., & Faires, J. D. (1985). Numerical analysis (3rd ed.). Boston, MA: Prindle, Weber & Schmidt.MATH
31.
Zurück zum Zitat Simon, M. K. (2007). Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. Berlin: Springer.MATH Simon, M. K. (2007). Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. Berlin: Springer.MATH
Metadaten
Titel
Training size optimization with reduced complexity in cell-free massive MIMO system
verfasst von
Sayeid M. Sahid Ullah
Wan Amirul Mahyiddin
Nur Azira Zakaria
Tarik Abdul Latef
Kamarul Ariffin Noordin
Kaharudin Dimyati
Publikationsdatum
10.07.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1791-3

Weitere Artikel der Ausgabe 4/2019

Wireless Networks 4/2019 Zur Ausgabe

Neuer Inhalt