Skip to main content

2017 | OriginalPaper | Buchkapitel

Transitioning to a Quantum-Resistant Public Key Infrastructure

verfasst von : Nina Bindel, Udyani Herath, Matthew McKague, Douglas Stebila

Erschienen in: Post-Quantum Cryptography

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To ensure uninterrupted cryptographic security, it is important to begin planning the transition to post-quantum cryptography. In addition to creating post-quantum primitives, we must also plan how to adapt the cryptographic infrastructure for the transition, especially in scenarios such as public key infrastructures (PKIs) with many participants. The use of hybrids—multiple algorithms in parallel—will likely play a role during the transition for two reasons: “hedging our bets” when the security of newer primitives is not yet certain but the security of older primitives is already in question; and to achieve security and functionality both in post-quantum-aware and in a backwards-compatible way with not-yet-upgraded software.
In this paper, we investigate the use of hybrid digital signature schemes. We consider several methods for combining signature schemes, and give conditions on when the resulting hybrid signature scheme is unforgeable. Additionally we address a new notion about the inability of an adversary to separate a hybrid signature into its components. For both unforgeability and non-separability, we give a novel security hierarchy based on how quantum the attack is. We then turn to three real-world standards involving digital signatures and PKI: certificates (X.509), secure channels (TLS), and email (S/MIME). We identify possible approaches to supporting hybrid signatures in these standards while retaining backwards compatibility, which we test in popular cryptographic libraries and implementations, noting especially the inability of some software to handle larger certificates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A brief overview of notation for quantum computing appears in Appendix A.
 
Literatur
1.
Zurück zum Zitat Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient lattice-based signature scheme with provably secure instantiation. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60. Springer, Cham (2016). doi:10.1007/978-3-319-31517-1_3 CrossRef Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient lattice-based signature scheme with provably secure instantiation. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60. Springer, Cham (2016). doi:10.​1007/​978-3-319-31517-1_​3 CrossRef
2.
Zurück zum Zitat Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö.: TESLA: tightly-secure efficient signatures from standard lattices. Cryptology ePrint Archive, Report 2015/755 (2015) Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö.: TESLA: tightly-secure efficient signatures from standard lattices. Cryptology ePrint Archive, Report 2015/755 (2015)
3.
Zurück zum Zitat Barreto, P., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper ring-LWE signatures. Cryptology ePrint Archive, Report 2016/1026 (2016) Barreto, P., Longa, P., Naehrig, M., Ricardini, J.E., Zanon, G.: Sharper ring-LWE signatures. Cryptology ePrint Archive, Report 2016/1026 (2016)
4.
Zurück zum Zitat de Beaudrap, N., Cleve, R., Watrous, J.: Sharp quantum versus classical query complexity separations. Algorithmica 34(4), 449–461 (2002)MathSciNetCrossRefMATH de Beaudrap, N., Cleve, R., Watrous, J.: Sharp quantum versus classical query complexity separations. Algorithmica 34(4), 449–461 (2002)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). doi:10.1007/BFb0053428 CrossRef Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). doi:10.​1007/​BFb0053428 CrossRef
6.
Zurück zum Zitat Bernstein, D.J., et al.: SPHINCS: Practical Stateless Hash-Based Signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_15 Bernstein, D.J., et al.: SPHINCS: Practical Stateless Hash-Based Signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46800-5_​15
7.
Zurück zum Zitat Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-resistant public key infrastructure (full version). Cryptology ePrint Archive, April 2017 Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a quantum-resistant public key infrastructure (full version). Cryptology ePrint Archive, April 2017
8.
Zurück zum Zitat Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_21 CrossRef Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40084-1_​21 CrossRef
9.
Zurück zum Zitat Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570. IEEE Computer Society Press, May 2015 Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570. IEEE Computer Society Press, May 2015
11.
Zurück zum Zitat Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5_8 CrossRef Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011). doi:10.​1007/​978-3-642-25405-5_​8 CrossRef
13.
Zurück zum Zitat Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_3 CrossRef Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). doi:10.​1007/​978-3-642-04138-9_​3 CrossRef
14.
Zurück zum Zitat Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280, May 2008 Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280, May 2008
15.
Zurück zum Zitat Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, August 2008 Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, August 2008
16.
Zurück zum Zitat Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_3 CrossRef Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40041-4_​3 CrossRef
17.
18.
Zurück zum Zitat Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefMATH Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_31 CrossRef Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-33027-8_​31 CrossRef
20.
Zurück zum Zitat Housley, R.: Cryptographic Message Syntax (CMS). RFC 5652, September 2009 Housley, R.: Cryptographic Message Syntax (CMS). RFC 5652, September 2009
21.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
22.
Zurück zum Zitat Ramsdell, B., Turner, S.: Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification. RFC 5751, January 2010 Ramsdell, B., Turner, S.: Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message Specification. RFC 5751, January 2010
Metadaten
Titel
Transitioning to a Quantum-Resistant Public Key Infrastructure
verfasst von
Nina Bindel
Udyani Herath
Matthew McKague
Douglas Stebila
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59879-6_22

Premium Partner