Skip to main content
Erschienen in: Quantum Information Processing 11/2023

01.11.2023

Transmon-photon entanglement by engineering shortcuts with optimized drivings

verfasst von: Zhi-Bo Feng, Run-Ying Yan

Erschienen in: Quantum Information Processing | Ausgabe 11/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The generation of entangled states in an optimized way is crucial to quantum information science and technology. Here, we propose an effective scheme for rapidly creating the entangled states between a transmon qubit and microwave photons by the technique of shortcuts to adiabaticity. An artificial atom of transmon circuit is coupled to a quantized resonator and a classical driving. The transmon-photon entanglement can be fast induced by inversely engineering the invariant-based Rabi drivings. Comparatively, the present scheme not only reduces the driving number but also employs the Rabi drivings with constant amplitudes. Furthermore, the operation fidelities can be enhanced due to a shorter duration time. Our work could offer an optimized avenue towards fast and robust information processing with superconducting qubits in a cavity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)MATHADS Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)MATHADS
2.
Zurück zum Zitat Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)ADS Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)ADS
3.
Zurück zum Zitat Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017)MathSciNetADS Wendin, G.: Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017)MathSciNetADS
4.
Zurück zum Zitat Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)ADS Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D.: A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)ADS
5.
Zurück zum Zitat Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Superconducting quantum computing: a review. Sci. China Inform. Sci. 63, 180501 (2020)MathSciNet Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Superconducting quantum computing: a review. Sci. China Inform. Sci. 63, 180501 (2020)MathSciNet
6.
Zurück zum Zitat He, K., Geng, X., Huang, R., Liu, J., Chen, W.: Quantum computation and simulation with superconducting qubits. Chin. Phys. B 30, 080304 (2021) He, K., Geng, X., Huang, R., Liu, J., Chen, W.: Quantum computation and simulation with superconducting qubits. Chin. Phys. B 30, 080304 (2021)
7.
Zurück zum Zitat Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022)ADS Bravyi, S., Dial, O., Gambetta, J.M., Gil, D., Nazario, Z.: The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022)ADS
8.
Zurück zum Zitat Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADS Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADS
9.
Zurück zum Zitat Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012)ADS Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012)ADS
10.
Zurück zum Zitat Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)ADS Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019)ADS
11.
Zurück zum Zitat Haroche, S., Brune, M., Raimond, J.M.: From cavity to circuit quantum electrodynamics. Nat. Phys. 16, 243 (2020) Haroche, S., Brune, M., Raimond, J.M.: From cavity to circuit quantum electrodynamics. Nat. Phys. 16, 243 (2020)
12.
Zurück zum Zitat Blais, A., Grimsmo, A.L., Girvin, S.M., Wallraff, A.: Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)MathSciNetADS Blais, A., Grimsmo, A.L., Girvin, S.M., Wallraff, A.: Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021)MathSciNetADS
13.
Zurück zum Zitat You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADS You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADS
14.
Zurück zum Zitat Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)MathSciNetMATHADS Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)MathSciNetMATHADS
15.
Zurück zum Zitat Mirhosseini, M., Sipahigil, A., Kalaee, M., Painter, O.: Superconducting qubit to optical photon transduction. Nature 588, 599 (2020)ADS Mirhosseini, M., Sipahigil, A., Kalaee, M., Painter, O.: Superconducting qubit to optical photon transduction. Nature 588, 599 (2020)ADS
16.
Zurück zum Zitat Hua, M., Tao, M.-J., Alsaedi, A., Hayat, T., Wei, H.-R., Deng, F.-G.: Bell-state generation on remote superconducting qubits with dark photons. Quantum Inf. Process. 17, 151 (2018)MathSciNetMATHADS Hua, M., Tao, M.-J., Alsaedi, A., Hayat, T., Wei, H.-R., Deng, F.-G.: Bell-state generation on remote superconducting qubits with dark photons. Quantum Inf. Process. 17, 151 (2018)MathSciNetMATHADS
17.
Zurück zum Zitat Song, C., Xu, K., Li, H., Zhang, Y.-R., Zhang, X., Liu, W., Guo, Q., Wang, Z., Ren, W., Hao, J., Feng, H., Fan, H., Zheng, D., Wang, D.-W., Wang, H., Zhu, S.-Y.: Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574 (2019)MathSciNetADS Song, C., Xu, K., Li, H., Zhang, Y.-R., Zhang, X., Liu, W., Guo, Q., Wang, Z., Ren, W., Hao, J., Feng, H., Fan, H., Zheng, D., Wang, D.-W., Wang, H., Zhu, S.-Y.: Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574 (2019)MathSciNetADS
18.
Zurück zum Zitat Zhong, Y., Chang, H.-S., Bienfait, A., Dumur, É., Chou, M.-H., Conner, C.R., Grebel, J., Povey, R.G., Yan, H., Schuster, D.I., Cleland, A.N.: Deterministic multi-qubit entanglement in a quantum network. Nature 590, 571 (2021)ADS Zhong, Y., Chang, H.-S., Bienfait, A., Dumur, É., Chou, M.-H., Conner, C.R., Grebel, J., Povey, R.G., Yan, H., Schuster, D.I., Cleland, A.N.: Deterministic multi-qubit entanglement in a quantum network. Nature 590, 571 (2021)ADS
19.
Zurück zum Zitat Cervera-Lierta, A., Krenn, M., Aspuru-Guzik, A., Galda, A.: Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. 17, 024062 (2022)ADS Cervera-Lierta, A., Krenn, M., Aspuru-Guzik, A., Galda, A.: Experimental high-dimensional Greenberger–Horne–Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. 17, 024062 (2022)ADS
20.
Zurück zum Zitat Bao, S., Kleer, S., Wang, R., Rahmani, A.: Optimal control of superconducting gmon qubits using Pontryagin’s minimum principle: preparing a maximally entangled state with singular bang-bang protocols. Phys. Rev. A 97, 062343 (2018)ADS Bao, S., Kleer, S., Wang, R., Rahmani, A.: Optimal control of superconducting gmon qubits using Pontryagin’s minimum principle: preparing a maximally entangled state with singular bang-bang protocols. Phys. Rev. A 97, 062343 (2018)ADS
21.
Zurück zum Zitat Egger, D.J., Ganzhorn, M., Salis, G., Fuhrer, A., Müller, P., Barkoutsos, P.. Kl.., Moll, N., Tavernelli, I., Filipp, S.: Entanglement generation in superconducting qubits using holonomic operations. Phys. Rev. Appl. 11, 014017 (2019)ADS Egger, D.J., Ganzhorn, M., Salis, G., Fuhrer, A., Müller, P., Barkoutsos, P.. Kl.., Moll, N., Tavernelli, I., Filipp, S.: Entanglement generation in superconducting qubits using holonomic operations. Phys. Rev. Appl. 11, 014017 (2019)ADS
22.
Zurück zum Zitat Yan, R.-Y., Feng, Z.-B.: Controllable and accelerated generation of entangled states between two superconducting qubits in circuit QED. Opt. Laser Technol. 135, 106699 (2021) Yan, R.-Y., Feng, Z.-B.: Controllable and accelerated generation of entangled states between two superconducting qubits in circuit QED. Opt. Laser Technol. 135, 106699 (2021)
23.
Zurück zum Zitat Ye, Q.-Z., Liang, Z.-T., Zhang, W.-X., Pan, D.-J., Xue, Z.-Y., Yan, H.: Speedup of entanglement generation in hybrid quantum systems through linear driving. Phys. Rev. A 106, 012407 (2022)ADS Ye, Q.-Z., Liang, Z.-T., Zhang, W.-X., Pan, D.-J., Xue, Z.-Y., Yan, H.: Speedup of entanglement generation in hybrid quantum systems through linear driving. Phys. Rev. A 106, 012407 (2022)ADS
24.
Zurück zum Zitat Cárdenas-López, F.A., Retamal, J.C., Chen, X.: Shortcuts to adiabaticity in superconducting circuits for fast multi-partite state generation. Commun. Phys. 6, 167 (2023) Cárdenas-López, F.A., Retamal, J.C., Chen, X.: Shortcuts to adiabaticity in superconducting circuits for fast multi-partite state generation. Commun. Phys. 6, 167 (2023)
25.
Zurück zum Zitat Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martinez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)MathSciNetADS Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martinez-Garaot, S., Muga, J.G.: Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys. 91, 045001 (2019)MathSciNetADS
26.
Zurück zum Zitat Chen, X., Torrontegui, E., Muga, J.G.: Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)ADS Chen, X., Torrontegui, E., Muga, J.G.: Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)ADS
27.
Zurück zum Zitat Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)ADS Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)ADS
28.
Zurück zum Zitat Yan, Y., Li, Y., Kinos, A., Walther, A., Shi, C., Rippe, L., Moser, J., Kröll, S., Chen, X.: Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency. Opt. Express 27, 8267 (2019)ADS Yan, Y., Li, Y., Kinos, A., Walther, A., Shi, C., Rippe, L., Moser, J., Kröll, S., Chen, X.: Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency. Opt. Express 27, 8267 (2019)ADS
29.
Zurück zum Zitat Zhao, Z.-Y., Yan, R.-Y., Feng, Z.-B.: Shortcut-based quantum gates on superconducting qubits in circuit QED. Chin. Phys. B 30, 088501 (2021)ADS Zhao, Z.-Y., Yan, R.-Y., Feng, Z.-B.: Shortcut-based quantum gates on superconducting qubits in circuit QED. Chin. Phys. B 30, 088501 (2021)ADS
30.
31.
Zurück zum Zitat Giannelli, L., Arimondo, E.: Three-level superadiabatic quantum driving. Phys. Rev. A 89, 033419 (2014)ADS Giannelli, L., Arimondo, E.: Three-level superadiabatic quantum driving. Phys. Rev. A 89, 033419 (2014)ADS
32.
Zurück zum Zitat Mortensen, H.L., Sørensen, J.J.W.H., Mølmer, K., Sherson, J.F.: Fast state transfer in a \(\Lambda \)-system: a shortcut-to-adiabaticity approach to robust and resource optimized control. New J. Phys. 20, 025009 (2018)ADS Mortensen, H.L., Sørensen, J.J.W.H., Mølmer, K., Sherson, J.F.: Fast state transfer in a \(\Lambda \)-system: a shortcut-to-adiabaticity approach to robust and resource optimized control. New J. Phys. 20, 025009 (2018)ADS
33.
Zurück zum Zitat Dong, X.-P., Lu, X.-J., Li, M., Zhao, Z.-Y., Feng, Z.-B.: Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving. Chin. Phys. B 30, 044214 (2021)ADS Dong, X.-P., Lu, X.-J., Li, M., Zhao, Z.-Y., Feng, Z.-B.: Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving. Chin. Phys. B 30, 044214 (2021)ADS
34.
Zurück zum Zitat Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)ADS Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)ADS
35.
Zurück zum Zitat Yu, L., Xu, J., Wu, J.L., Ji, X.: Fast generating W state of three superconducting qubits via Lewis–Riesenfeld invariants. Chin. Phys. B 26, 060306 (2017)ADS Yu, L., Xu, J., Wu, J.L., Ji, X.: Fast generating W state of three superconducting qubits via Lewis–Riesenfeld invariants. Chin. Phys. B 26, 060306 (2017)ADS
36.
Zurück zum Zitat Zhang, Z., Wang, T., Xiang, L., Yao, J., Wu, J., Yin, Y.: Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A 95, 042345 (2017)ADS Zhang, Z., Wang, T., Xiang, L., Yao, J., Wu, J., Yin, Y.: Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A 95, 042345 (2017)ADS
37.
Zurück zum Zitat Feng, Z.-B., Lu, X.-J., Li, M., Yan, R.-Y., Zhou, Y.-Q.: Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving. New J. Phys. 19, 123023 (2017)ADS Feng, Z.-B., Lu, X.-J., Li, M., Yan, R.-Y., Zhou, Y.-Q.: Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving. New J. Phys. 19, 123023 (2017)ADS
38.
Zurück zum Zitat Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Accelerating population transfer in a transmon qutrit via shortcuts to adiabaticity. Ann. Phys. (Berlin) 530, 1700351 (2018)MathSciNetMATHADS Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Accelerating population transfer in a transmon qutrit via shortcuts to adiabaticity. Ann. Phys. (Berlin) 530, 1700351 (2018)MathSciNetMATHADS
39.
Zurück zum Zitat Wang, T., Zhang, Z., Xiang, L., Jia, Z., Duan, P., Cai, W., Gong, Z., Zong, Z., Wu, M., Wu, J., Sun, L., Yin, Y., Guo, G.: The experimental realization of high-fidelity ‘shortcut-to-adiabaticity’ quantum gates in a superconducting Xmon qubit. New J. Phys. 20, 065003 (2018)ADS Wang, T., Zhang, Z., Xiang, L., Jia, Z., Duan, P., Cai, W., Gong, Z., Zong, Z., Wu, M., Wu, J., Sun, L., Yin, Y., Guo, G.: The experimental realization of high-fidelity ‘shortcut-to-adiabaticity’ quantum gates in a superconducting Xmon qubit. New J. Phys. 20, 065003 (2018)ADS
40.
Zurück zum Zitat Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv. 5, eaau5999 (2019)ADS Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Superadiabatic population transfer in a three-level superconducting circuit. Sci. Adv. 5, eaau5999 (2019)ADS
41.
Zurück zum Zitat Yan, T., Liu, B.J., Xu, K., Song, C., Liu, S., Zhang, Z., Deng, H., Yan, Z., Rong, H., Huang, K., Yung, M.H., Chen, Y., Yu, D.: Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates. Phys. Rev. Lett. 122, 080501 (2019)ADS Yan, T., Liu, B.J., Xu, K., Song, C., Liu, S., Zhang, Z., Deng, H., Yan, Z., Rong, H., Huang, K., Yung, M.H., Chen, Y., Yu, D.: Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates. Phys. Rev. Lett. 122, 080501 (2019)ADS
42.
Zurück zum Zitat Chu, J., Li, D., Yang, X., Song, S., Han, Z., Yang, Z., Dong, Y., Zheng, W., Wang, Z., Yu, X., Lan, D., Tan, X., Yu, Y.: Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits. Phys. Rev. Appl. 13, 064012 (2020)ADS Chu, J., Li, D., Yang, X., Song, S., Han, Z., Yang, Z., Dong, Y., Zheng, W., Wang, Z., Yu, X., Lan, D., Tan, X., Yu, Y.: Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits. Phys. Rev. Appl. 13, 064012 (2020)ADS
43.
Zurück zum Zitat Yan, R.-Y., Feng, Z.-B.: Two-qubit state swap and entanglement creation in a superconducting circuit QED via Counterdiabatic Drivings. Adv. Quantum Technol. 3, 2000088 (2020) Yan, R.-Y., Feng, Z.-B.: Two-qubit state swap and entanglement creation in a superconducting circuit QED via Counterdiabatic Drivings. Adv. Quantum Technol. 3, 2000088 (2020)
44.
Zurück zum Zitat Wang, X.M., Zhang, A.Q., Xu, P., Zhao, S.M.: Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics. Chin. Phys. B 30, 030307 (2021)ADS Wang, X.M., Zhang, A.Q., Xu, P., Zhao, S.M.: Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics. Chin. Phys. B 30, 030307 (2021)ADS
45.
Zurück zum Zitat Yan, R.-Y., Feng, Z.-B., Li, M., Zhang, C.-L., Zhao, Z.-Y.: Speeding up the generation of entangled state between a superconducting qubit and cavity photons via counterdiabatic driving. Ann. Phys. (Berlin) 532, 1900613 (2020)MATHADS Yan, R.-Y., Feng, Z.-B., Li, M., Zhang, C.-L., Zhao, Z.-Y.: Speeding up the generation of entangled state between a superconducting qubit and cavity photons via counterdiabatic driving. Ann. Phys. (Berlin) 532, 1900613 (2020)MATHADS
46.
Zurück zum Zitat Mezzacapo, A., Lamata, L., Filipp, S., Solano, E.: Many-body interactions with tunable-coupling transmon qubits. Phys. Rev. Lett. 113, 050501 (2014)ADS Mezzacapo, A., Lamata, L., Filipp, S., Solano, E.: Many-body interactions with tunable-coupling transmon qubits. Phys. Rev. Lett. 113, 050501 (2014)ADS
47.
Zurück zum Zitat Lu, X.-J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)ADS Lu, X.-J., Li, M., Zhao, Z.Y., Zhang, C.-L., Han, H.-P., Feng, Z.-B., Zhou, Y.-Q.: Nonleaky and accelerated population transfer in a transmon qutrit. Phys. Rev. A 96, 023843 (2017)ADS
48.
Zurück zum Zitat Yan, R.-Y., Li, M., Zhao, Z.Y., Lu, X.-J., Feng, Z.-B.: Non-leaky population transfer in a transmon artificial atom. Laser Phys. Lett. 15, 015210 (2018)ADS Yan, R.-Y., Li, M., Zhao, Z.Y., Lu, X.-J., Feng, Z.-B.: Non-leaky population transfer in a transmon artificial atom. Laser Phys. Lett. 15, 015210 (2018)ADS
49.
Zurück zum Zitat Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADS Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADS
50.
Zurück zum Zitat Yan, R.-Y., Feng, Z.-B., Zhang, C.-L., Li, M., Lu, X.-J., Zhou, Y.-Q.: Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity. Laser Phys. Lett. 15, 115205 (2018)ADS Yan, R.-Y., Feng, Z.-B., Zhang, C.-L., Li, M., Lu, X.-J., Zhou, Y.-Q.: Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity. Laser Phys. Lett. 15, 115205 (2018)ADS
51.
Zurück zum Zitat Li, Y.-C., Chen, X.: Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counterdiabatic driving. Phys. Rev. A 94, 063411 (2016)ADS Li, Y.-C., Chen, X.: Shortcut to adiabatic population transfer in quantum three-level systems: effective two-level problems and feasible counterdiabatic driving. Phys. Rev. A 94, 063411 (2016)ADS
52.
Zurück zum Zitat Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)ADS Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)ADS
53.
Zurück zum Zitat Gambetta, J.M., Houck, A.A., Blais, A.: Superconducting qubit with Purcell protection and tunable coupling. Phys. Rev. Lett. 106, 030502 (2011)ADS Gambetta, J.M., Houck, A.A., Blais, A.: Superconducting qubit with Purcell protection and tunable coupling. Phys. Rev. Lett. 106, 030502 (2011)ADS
54.
Zurück zum Zitat Hoffman, A.J., Srinivasan, S.J., Gambetta, J.M., Houck, A.A.: Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling. Phys. Rev. B 84, 184515 (2011)ADS Hoffman, A.J., Srinivasan, S.J., Gambetta, J.M., Houck, A.A.: Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling. Phys. Rev. B 84, 184515 (2011)ADS
55.
Zurück zum Zitat Premaratne, S.P., Wellstood, F.C., Palmer, B.S.: Microwave photon Fock state generation by stimulated Raman adiabatic passage. Nat. Commun. 8, 114148 (2017) Premaratne, S.P., Wellstood, F.C., Palmer, B.S.: Microwave photon Fock state generation by stimulated Raman adiabatic passage. Nat. Commun. 8, 114148 (2017)
Metadaten
Titel
Transmon-photon entanglement by engineering shortcuts with optimized drivings
verfasst von
Zhi-Bo Feng
Run-Ying Yan
Publikationsdatum
01.11.2023
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 11/2023
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04152-5

Weitere Artikel der Ausgabe 11/2023

Quantum Information Processing 11/2023 Zur Ausgabe

Neuer Inhalt