Skip to main content

2015 | OriginalPaper | Buchkapitel

6. Transversal Flow Field of Particle-Laden Linear Fluids

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mean secondary flows in straight tubes of non-circular cross section turbulent driven of Newtonian fluids by constant pressure gradients are discussed in their historical context as well as in terms of the most recent findings. The fundamental issues and their impact on industrial processes, in particular on processes involving particle laden flows are reviewed. Similarities with the driving mechanism of secondary laminar flows of viscoelastic fluids, criteria for the existence of secondary flows, and general classification and closure approximations for homogeneous and wall-bounded flows are discussed.
The rheology of dilute, semi-dilute, and concentrated non-Brownian suspensions is reviewed. Computing shear viscosity in different concentration regimes and recent progress in determining the normal stress functions of semi-dilute and concentrated non-colloidal suspensions are summarized. Macroscopic constitutive models for suspension flow, shear-induced and stress-induced particle migration, applications to Stokesian dynamics simulations (SDS), and efforts to improve the predictions through SDS both in unbounded and bounded flows are discussed together with challenges in shear-driven migration of non-colloidal concentrated suspensions. The complex nature and sometimes contradictory behavior reported in the literature make it challenging to construct a theoretical model. Efforts to understand the motion of particles in viscoelastic suspending media are summarized and recent research on secondary field in Poiseuille flow of shear-driven migration of suspensions is discussed together with secondary field in single-phase and multiphase turbulent flow of suspensions in tubes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
73.
Zurück zum Zitat Siginer DA (2013) Stability of non-linear constitutive formulations for viscoelastic fluids. Springer, New York, NY Siginer DA (2013) Stability of non-linear constitutive formulations for viscoelastic fluids. Springer, New York, NY
97.
Zurück zum Zitat Speziale CG (1982) On turbulent secondary flows in pipes of non-circular cross section. Int J Eng Sci 7:863–872 Speziale CG (1982) On turbulent secondary flows in pipes of non-circular cross section. Int J Eng Sci 7:863–872
99.
Zurück zum Zitat Nikuradse J (1930) Turbulente Stromung in Nicht-Kreisformigen Rohren. Ingenieur Archiv 1:306–332MATH Nikuradse J (1930) Turbulente Stromung in Nicht-Kreisformigen Rohren. Ingenieur Archiv 1:306–332MATH
114.
Zurück zum Zitat Criminale WO Jr, Ericksen JL, Filbey GL (1957) Steady shear flow of non-Newtonian fluids. Arch Rat Mech Anal 1(1):410–417MathSciNet Criminale WO Jr, Ericksen JL, Filbey GL (1957) Steady shear flow of non-Newtonian fluids. Arch Rat Mech Anal 1(1):410–417MathSciNet
115.
Zurück zum Zitat Truesdell C, Noll W (1992) The non-linear field theories of mechanics, 2nd edn. Springer, BerlinMATH Truesdell C, Noll W (1992) The non-linear field theories of mechanics, 2nd edn. Springer, BerlinMATH
239.
Zurück zum Zitat Nikuradse J (1926) Untorsuchungen iiber die Geschwindigteitsverteilung in turbulenten Stromungen. Thesis, Gottingen, V.D.I.-Forsch, p. 281. Nikuradse J (1926) Untorsuchungen iiber die Geschwindigteitsverteilung in turbulenten Stromungen. Thesis, Gottingen, V.D.I.-Forsch, p. 281.
240.
Zurück zum Zitat Prandtl L (1927) Über die ausgebildete turbulenz. Verfahren diese Zweite Internationale Kongress für Technische Mechanik, Zürich [“Turbulent flow,” NACA Technical Memo 435, pp. 62–75] Prandtl L (1927) Über die ausgebildete turbulenz. Verfahren diese Zweite Internationale Kongress für Technische Mechanik, Zürich [“Turbulent flow,” NACA Technical Memo 435, pp. 62–75]
241.
Zurück zum Zitat Prandtl L (1927) Über den Reibungswiderstand stromenderluft, Ergeb. Aerodyn. Versuch., Gottingen, III series Prandtl L (1927) Über den Reibungswiderstand stromenderluft, Ergeb. Aerodyn. Versuch., Gottingen, III series
242.
Zurück zum Zitat Einstein HA, Li H (1958) Secondary currents in straight channels. Trans Am Geophys Union 39:1085–1088 Einstein HA, Li H (1958) Secondary currents in straight channels. Trans Am Geophys Union 39:1085–1088
243.
Zurück zum Zitat Brundrett E, Baines WD (1964) The production and diffusion of vorticity in duct flow. J Fluid Mech 19(3):375–394MATH Brundrett E, Baines WD (1964) The production and diffusion of vorticity in duct flow. J Fluid Mech 19(3):375–394MATH
244.
Zurück zum Zitat Perkins HJ (1970) The formation of streamwise vorticity in turbulent flow. J Fluid Mech 44:721–740MATH Perkins HJ (1970) The formation of streamwise vorticity in turbulent flow. J Fluid Mech 44:721–740MATH
245.
Zurück zum Zitat Huser A (1992) Direct numerical simulation of turbulent flow in a square duct. PhD thesis, Department of Aerospace Engineering Sciences, University of Colorado Huser A (1992) Direct numerical simulation of turbulent flow in a square duct. PhD thesis, Department of Aerospace Engineering Sciences, University of Colorado
246.
Zurück zum Zitat Hoagland LC (1960) Fully developed turbulent flow in straight rectangular ducts; secondary flow, its cause and effect on the primary flow. ScD thesis, Department of Mechanical Engineering, MIT Hoagland LC (1960) Fully developed turbulent flow in straight rectangular ducts; secondary flow, its cause and effect on the primary flow. ScD thesis, Department of Mechanical Engineering, MIT
247.
Zurück zum Zitat Leutheusser HJ (1963) Turbulent flow in rectangular ducts. J Hydraul Div 89:1–19 Leutheusser HJ (1963) Turbulent flow in rectangular ducts. J Hydraul Div 89:1–19
248.
Zurück zum Zitat Gessner FB, Jones JB (1965) On some aspects of fully-developed turbulent flow in rectangular channels. J Fluid Mech 23:689–713 Gessner FB, Jones JB (1965) On some aspects of fully-developed turbulent flow in rectangular channels. J Fluid Mech 23:689–713
249.
Zurück zum Zitat Launder BE, Ying WM (1972) Secondary flows in ducts of square cross-section. J Fluid Mech 54(2):289–295 Launder BE, Ying WM (1972) Secondary flows in ducts of square cross-section. J Fluid Mech 54(2):289–295
250.
Zurück zum Zitat Hinze JO (1973) Experimental investigation on secondary currents in the turbulent flow through a straight conduit. Appl Sci Res 28:453–465 Hinze JO (1973) Experimental investigation on secondary currents in the turbulent flow through a straight conduit. Appl Sci Res 28:453–465
251.
Zurück zum Zitat Demuren AO, Rodi W (1984) Calculation of turbulence-driven secondary motion in non-circular ducts. J Fluid Mech 140:189–222MATH Demuren AO, Rodi W (1984) Calculation of turbulence-driven secondary motion in non-circular ducts. J Fluid Mech 140:189–222MATH
252.
Zurück zum Zitat Nagata K, Hunt JCR, Sakai Y, Wong H (2011) Distorted turbulence and secondary flow near right-angled plates. J Fluid Mech 668:446–479MATHMathSciNet Nagata K, Hunt JCR, Sakai Y, Wong H (2011) Distorted turbulence and secondary flow near right-angled plates. J Fluid Mech 668:446–479MATHMathSciNet
253.
Zurück zum Zitat Bradshaw P (1987) Turbulent secondary flows. Annu Rev Fluid Mech 19:53 Bradshaw P (1987) Turbulent secondary flows. Annu Rev Fluid Mech 19:53
254.
Zurück zum Zitat Mellor GL, Herring HJ (1973) A survey of the mean turbulent field closure models. AIAA J 11(5):590–599MATH Mellor GL, Herring HJ (1973) A survey of the mean turbulent field closure models. AIAA J 11(5):590–599MATH
255.
Zurück zum Zitat Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds stress turbulence closure. J Fluid Mech 68:537–566MATH Launder BE, Reece GJ, Rodi W (1975) Progress in the development of a Reynolds stress turbulence closure. J Fluid Mech 68:537–566MATH
256.
Zurück zum Zitat Hinze JO (1975) Turbulence. McGraw-Hill, New York, NY Hinze JO (1975) Turbulence. McGraw-Hill, New York, NY
257.
Zurück zum Zitat Speziale CG (1987) On non-linear K-l and K-ε models of turbulence. J Fluid Mech 178:459–475MATH Speziale CG (1987) On non-linear K-l and K-ε models of turbulence. J Fluid Mech 178:459–475MATH
258.
Zurück zum Zitat Yoshizawa A (1984) Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys Fluids 27(6):1377–1388MATH Yoshizawa A (1984) Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys Fluids 27(6):1377–1388MATH
259.
Zurück zum Zitat Yoshizawa A (1987) Statistical modeling of a transport equation for the kinetic energy dissipation rate. Phys Fluids 30(3):628–632MathSciNet Yoshizawa A (1987) Statistical modeling of a transport equation for the kinetic energy dissipation rate. Phys Fluids 30(3):628–632MathSciNet
260.
Zurück zum Zitat Shimomura Y, Yoshizawa A (1986) Statistical analysis of anisotropic turbulent viscosity in a rotating system. J Phys Soc Jpn 55(6):1904–1917 Shimomura Y, Yoshizawa A (1986) Statistical analysis of anisotropic turbulent viscosity in a rotating system. J Phys Soc Jpn 55(6):1904–1917
261.
Zurück zum Zitat Nisizima S, Yoshizawa A (1987) Turbulent channel and couette flows using an anisotropic k-epsilon model. AIAA J 25(3):414–420MATH Nisizima S, Yoshizawa A (1987) Turbulent channel and couette flows using an anisotropic k-epsilon model. AIAA J 25(3):414–420MATH
262.
Zurück zum Zitat Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51MATHMathSciNet Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51MATHMathSciNet
263.
Zurück zum Zitat Rubinstein R, Barton JM (1990) Non-linear Reynolds stress models and the renormalization group. Phys Fluids 2(8):1472–1477MATH Rubinstein R, Barton JM (1990) Non-linear Reynolds stress models and the renormalization group. Phys Fluids 2(8):1472–1477MATH
264.
Zurück zum Zitat Speziale CG, So RMC, Younis BA (1992) On the prediction of turbulent secondary flows, NASA-ICASE Report No. 92-57 Speziale CG, So RMC, Younis BA (1992) On the prediction of turbulent secondary flows, NASA-ICASE Report No. 92-57
265.
Zurück zum Zitat Lai YG, So RMC (1990) On near-wall turbulent flow modeling. J Fluid Mech 221:641–673MATH Lai YG, So RMC (1990) On near-wall turbulent flow modeling. J Fluid Mech 221:641–673MATH
266.
Zurück zum Zitat Speziale CG (1991) Analytical methods for the development of Reynolds stress closures in turbulence. Annu Rev Fluid Mech 23:107–157MathSciNet Speziale CG (1991) Analytical methods for the development of Reynolds stress closures in turbulence. Annu Rev Fluid Mech 23:107–157MathSciNet
267.
Zurück zum Zitat Kolmogorov AN (1941) Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:299–303 Kolmogorov AN (1941) Local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:299–303
268.
Zurück zum Zitat Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, AmsterdamMATH Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, AmsterdamMATH
269.
Zurück zum Zitat Einstein A (1906) Eine neue Bestimmung der Moleküledimensionen. Annal Phys 19:289–306MATH Einstein A (1906) Eine neue Bestimmung der Moleküledimensionen. Annal Phys 19:289–306MATH
270.
Zurück zum Zitat Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküledimensionen. Annal Phys 34:591–592MATH Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküledimensionen. Annal Phys 34:591–592MATH
271.
Zurück zum Zitat Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York, NYMATH Einstein A (1956) Investigations on the theory of the Brownian movement. Dover, New York, NYMATH
272.
Zurück zum Zitat Batchelor GK, Green JT (1972) The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J Fluid Mech 56:375–400MATH Batchelor GK, Green JT (1972) The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J Fluid Mech 56:375–400MATH
273.
Zurück zum Zitat Batchelor GK, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order c2. J Fluid Mech 56:401–427MATH Batchelor GK, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order c2. J Fluid Mech 56:401–427MATH
274.
Zurück zum Zitat Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117MathSciNet Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117MathSciNet
275.
Zurück zum Zitat Krieger IM (1963) A dimensional approach to colloid rheology. Trans Soc Rheol 7:101–110 Krieger IM (1963) A dimensional approach to colloid rheology. Trans Soc Rheol 7:101–110
276.
Zurück zum Zitat Krieger IM (1972) Rheology of monodisperse lattice. Adv Colloid Interface Sci 3:111–136 Krieger IM (1972) Rheology of monodisperse lattice. Adv Colloid Interface Sci 3:111–136
277.
Zurück zum Zitat Stickell JJ, Powell RL (2005) Fluid mechanics and rheology of dense suspensions. Annu Rev Fluid Mech 37:129–149 Stickell JJ, Powell RL (2005) Fluid mechanics and rheology of dense suspensions. Annu Rev Fluid Mech 37:129–149
278.
Zurück zum Zitat Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439 Leighton D, Acrivos A (1987) The shear-induced migration of particles in concentrated suspensions. J Fluid Mech 181:415–439
279.
Zurück zum Zitat Morris JF, Boulay F (1999) Curvilinear flows of non-colloidal suspensions: the role of normal stresses. J Rheol 43(5):1213–1237 Morris JF, Boulay F (1999) Curvilinear flows of non-colloidal suspensions: the role of normal stresses. J Rheol 43(5):1213–1237
280.
Zurück zum Zitat Zarraga IE, Hill DA, Leighton DT (2000) The characterization of the total stress of concentrated suspensions of non-colloidal spheres in Newtonian fluids. J Rheol 44(2):185–220 Zarraga IE, Hill DA, Leighton DT (2000) The characterization of the total stress of concentrated suspensions of non-colloidal spheres in Newtonian fluids. J Rheol 44(2):185–220
281.
Zurück zum Zitat Parsi F, Gadala-Maria F (1987) Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J Rheol 31(8):725–732 Parsi F, Gadala-Maria F (1987) Fore-and-aft asymmetry in a concentrated suspension of solid spheres. J Rheol 31(8):725–732
282.
Zurück zum Zitat Brady JF, Morris JF (1997) Microstructure of strongly-sheared suspensions and its impact on rheology and diffusion. J Fluid Mech 348:103–139MATH Brady JF, Morris JF (1997) Microstructure of strongly-sheared suspensions and its impact on rheology and diffusion. J Fluid Mech 348:103–139MATH
283.
Zurück zum Zitat Wilson HJ (2005) An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J Fluid Mech 534:97–114MATHMathSciNet Wilson HJ (2005) An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow. J Fluid Mech 534:97–114MATHMathSciNet
284.
Zurück zum Zitat Sierou A, Brady JF (2001) Accelerated Stokesian dynamics simulations. J Fluid Mech 448:115–146MATH Sierou A, Brady JF (2001) Accelerated Stokesian dynamics simulations. J Fluid Mech 448:115–146MATH
285.
Zurück zum Zitat Sierou A, Brady JF (2002) Rheology and microstructure in concentrated non-colloidal suspensions. J RheolJ Rheol 46(5):1031–1056 Sierou A, Brady JF (2002) Rheology and microstructure in concentrated non-colloidal suspensions. J RheolJ Rheol 46(5):1031–1056
286.
Zurück zum Zitat Boyer F, Pouliquen O, Guazzelli É (2011) Dense suspensions in rotating-rod flows: normal stresses and particle migration. J Fluid Mech 686:5–25MATH Boyer F, Pouliquen O, Guazzelli É (2011) Dense suspensions in rotating-rod flows: normal stresses and particle migration. J Fluid Mech 686:5–25MATH
287.
Zurück zum Zitat Coutourier É, Boyer F, Pouliquen O, Guazzelli É (2011) Suspensions in a tilted trough: second normal stress difference. J Fluid Mech 686:26–39 Coutourier É, Boyer F, Pouliquen O, Guazzelli É (2011) Suspensions in a tilted trough: second normal stress difference. J Fluid Mech 686:26–39
288.
Zurück zum Zitat Dbouk T, Lobry L, Lemaire E (2013) Normal stresses in concentrated non-Brownian suspensions. J Fluid Mech 715(1):239–272MATHMathSciNet Dbouk T, Lobry L, Lemaire E (2013) Normal stresses in concentrated non-Brownian suspensions. J Fluid Mech 715(1):239–272MATHMathSciNet
289.
Zurück zum Zitat Singh A, Nott PR (2003) Experimental measurements of the normal stresses in sheared Stokesian suspensions. J Fluid Mech 490:293–320MATH Singh A, Nott PR (2003) Experimental measurements of the normal stresses in sheared Stokesian suspensions. J Fluid Mech 490:293–320MATH
290.
Zurück zum Zitat Joseph DD, Fosdick RL (1973) The free surface on a liquid between cylinders rotating at different speeds, Part I. Arch Ration Mech Anal 49(5):321–380MATHMathSciNet Joseph DD, Fosdick RL (1973) The free surface on a liquid between cylinders rotating at different speeds, Part I. Arch Ration Mech Anal 49(5):321–380MATHMathSciNet
291.
Zurück zum Zitat Joseph DD, Beavers GS, Fosdick RL (1973) The free surface on a liquid between cylinders rotating at different speeds, Part II. Arch Ration Mech Anal 49(5):381–401MATHMathSciNet Joseph DD, Beavers GS, Fosdick RL (1973) The free surface on a liquid between cylinders rotating at different speeds, Part II. Arch Ration Mech Anal 49(5):381–401MATHMathSciNet
292.
293.
Zurück zum Zitat Serrin J (1959) Mathematical principles of classical fluid mechanics (monograph). In: Truesdell C (ed) Handbuch der Physik, vol VIII/1. Springer, Berlin, pp 125–263 Serrin J (1959) Mathematical principles of classical fluid mechanics (monograph). In: Truesdell C (ed) Handbuch der Physik, vol VIII/1. Springer, Berlin, pp 125–263
294.
Zurück zum Zitat Joseph DD (1973) Domain perturbations: the higher order theory of infinitesimal water waves. Arch Ration Mech Anal 51(4):295–303MATH Joseph DD (1973) Domain perturbations: the higher order theory of infinitesimal water waves. Arch Ration Mech Anal 51(4):295–303MATH
295.
Zurück zum Zitat Siginer DA (1984) Free surface on a simple fluid between rotating eccentric cylinders, Part I: analytical solution. J Non Newton Fluid Mech 15:93–109MATH Siginer DA (1984) Free surface on a simple fluid between rotating eccentric cylinders, Part I: analytical solution. J Non Newton Fluid Mech 15:93–109MATH
296.
Zurück zum Zitat Siginer DA, Beavers GS (1984) Free surface on a simple fluid between rotating eccentric cylinders, Part II: experiments. J Non Newton Fluid Mech 15:109–122 Siginer DA, Beavers GS (1984) Free surface on a simple fluid between rotating eccentric cylinders, Part II: experiments. J Non Newton Fluid Mech 15:109–122
297.
Zurück zum Zitat Siginer DA (1984) General Weissenberg effect in free surface rheometry, Part I: analytical considerations. J Appl Math Phys 35(4):545–558MATH Siginer DA (1984) General Weissenberg effect in free surface rheometry, Part I: analytical considerations. J Appl Math Phys 35(4):545–558MATH
298.
Zurück zum Zitat Siginer DA (1984) General Weissenberg effect in free surface rheometry, Part II: experiments. J Appl Math Phys 35(5):618–633 Siginer DA (1984) General Weissenberg effect in free surface rheometry, Part II: experiments. J Appl Math Phys 35(5):618–633
299.
Zurück zum Zitat Wineman AS, Pipkin AC (1966) Slow viscoelastic flow in tilted troughs. Acta Mech 2(1):104–115 Wineman AS, Pipkin AC (1966) Slow viscoelastic flow in tilted troughs. Acta Mech 2(1):104–115
300.
Zurück zum Zitat Tanner RI (1970) Some methods for estimating the normal stress functions in viscometric flows. Trans Soc Rheol 14(4):483–508MATH Tanner RI (1970) Some methods for estimating the normal stress functions in viscometric flows. Trans Soc Rheol 14(4):483–508MATH
301.
Zurück zum Zitat Sturges L, Joseph DD (1975) Slow motion and viscometric motion, Part V: the free surface on a simple fluid flowing down a tilted trough. Arch Ration Mech Anal 59(4):359–387MATHMathSciNet Sturges L, Joseph DD (1975) Slow motion and viscometric motion, Part V: the free surface on a simple fluid flowing down a tilted trough. Arch Ration Mech Anal 59(4):359–387MATHMathSciNet
302.
Zurück zum Zitat Siginer DA (1991) Viscoelastic swirling flow with free surface in cylindrical chambers. Rheol Acta 30(2):159–175MathSciNet Siginer DA (1991) Viscoelastic swirling flow with free surface in cylindrical chambers. Rheol Acta 30(2):159–175MathSciNet
303.
Zurück zum Zitat Siginer DA, Knight RW (1993) Swirling free surface flow in cylindrical containers. J Eng Math 27:245–264MATHMathSciNet Siginer DA, Knight RW (1993) Swirling free surface flow in cylindrical containers. J Eng Math 27:245–264MATHMathSciNet
304.
Zurück zum Zitat Deboeuf A, Gauthier G, Martin J, Yurkovetsky Y, Morris JF (2009) Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys Rev Lett 102:108301 Deboeuf A, Gauthier G, Martin J, Yurkovetsky Y, Morris JF (2009) Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys Rev Lett 102:108301
305.
Zurück zum Zitat Prasad D, Kytomaa H (1995) Particle stress and viscous compaction during shear of dense suspensions. Int J Multiphas Flow 21(5):775MATH Prasad D, Kytomaa H (1995) Particle stress and viscous compaction during shear of dense suspensions. Int J Multiphas Flow 21(5):775MATH
306.
Zurück zum Zitat Phung TN, Brady JF, Bossis G (1996) Stokesian dynamics simulation of Brownian suspensions. J Fluid Mech 313:181–207 Phung TN, Brady JF, Bossis G (1996) Stokesian dynamics simulation of Brownian suspensions. J Fluid Mech 313:181–207
307.
Zurück zum Zitat Yurkovetsky Y, I (1997) Statistical mechanics of bubbly liquids. II. Behavior of sheared suspensions of non-Brownian particles, PhD thesis, California Institute of Technology Yurkovetsky Y, I (1997) Statistical mechanics of bubbly liquids. II. Behavior of sheared suspensions of non-Brownian particles, PhD thesis, California Institute of Technology
308.
Zurück zum Zitat Garland S, Gauthier G, Martin J, Morris J (2013) Normal stress measurements in sheared non-Brownian suspensions. J Rheol 57(1):71–89 Garland S, Gauthier G, Martin J, Morris J (2013) Normal stress measurements in sheared non-Brownian suspensions. J Rheol 57(1):71–89
309.
Zurück zum Zitat Segré G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210 Segré G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210
310.
Zurück zum Zitat Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14:115–135MATH Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech 14:115–135MATH
311.
Zurück zum Zitat Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in poiseuille flow Part 2. Experimental results and interpretation. J Fluid Mech 14:136–157 Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in poiseuille flow Part 2. Experimental results and interpretation. J Fluid Mech 14:136–157
312.
Zurück zum Zitat Gadala-Maria F, Acrivos A (1980) Shear induced structure in a concentrated suspension of solid spheres. J Rheol 24(6):799–815 Gadala-Maria F, Acrivos A (1980) Shear induced structure in a concentrated suspension of solid spheres. J Rheol 24(6):799–815
313.
Zurück zum Zitat Eckstein EC, Bailey DG, Shapiro AH (1977) Self-diffusion of particles in shear flow of a suspension. J Fluid Mech 79:191–208 Eckstein EC, Bailey DG, Shapiro AH (1977) Self-diffusion of particles in shear flow of a suspension. J Fluid Mech 79:191–208
314.
Zurück zum Zitat Leighton D, Acrivos A (1987) Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J Fluid Mech 177:109–131 Leighton D, Acrivos A (1987) Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J Fluid Mech 177:109–131
315.
Zurück zum Zitat Nott PR, Brady JF (1994) Pressure-driven flow of suspensions: simulation and theory. J Fluid Mech 275:157–199MATH Nott PR, Brady JF (1994) Pressure-driven flow of suspensions: simulation and theory. J Fluid Mech 275:157–199MATH
316.
Zurück zum Zitat Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech 155:105–129 Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech 155:105–129
317.
Zurück zum Zitat Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157 Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157
318.
Zurück zum Zitat Durlofsky LJ, Brady JF (1989) Dynamic simulation of bounded suspensions of hydrodynamically interacting particles. J Fluid Mech 200:39–67MATHMathSciNet Durlofsky LJ, Brady JF (1989) Dynamic simulation of bounded suspensions of hydrodynamically interacting particles. J Fluid Mech 200:39–67MATHMathSciNet
319.
Zurück zum Zitat Hampton RE, Mammoli AA, Graham AL, Tetlow N, Altobelli SA (1997) Migration of particles undergoing pressure-driven flow in a circular conduit. J Rheol 41(3):621–640 Hampton RE, Mammoli AA, Graham AL, Tetlow N, Altobelli SA (1997) Migration of particles undergoing pressure-driven flow in a circular conduit. J Rheol 41(3):621–640
320.
Zurück zum Zitat Phan-Thien N, Fang Z (1996) Entrance length and pulsatile flows of a model concentrated suspension. J Rheol 40(4):521–529 Phan-Thien N, Fang Z (1996) Entrance length and pulsatile flows of a model concentrated suspension. J Rheol 40(4):521–529
321.
Zurück zum Zitat Karnis A, Goldsmith HL, Mason SG (1966) The kinetics of flowing dispersions: concentrated suspensions of rigid particles. J Colloid Interface Sci 22(6):531–553 Karnis A, Goldsmith HL, Mason SG (1966) The kinetics of flowing dispersions: concentrated suspensions of rigid particles. J Colloid Interface Sci 22(6):531–553
322.
Zurück zum Zitat Koh CJ (1991) Experimental and theoretical studies on two-phase flows. PhD thesis, California Institute of Technology Koh CJ (1991) Experimental and theoretical studies on two-phase flows. PhD thesis, California Institute of Technology
323.
Zurück zum Zitat Koh CJ, Hookham P, Leal LG (1994) An experimental investigation of concentrated suspension flows in a rectangular channel. J Fluid Mech 266:1–32 Koh CJ, Hookham P, Leal LG (1994) An experimental investigation of concentrated suspension flows in a rectangular channel. J Fluid Mech 266:1–32
324.
Zurück zum Zitat Abbott JR, Tetlow N, Graham AL, Altobelli SA, Fukushima E, Mondy LA, Stephens ST (1991) Experimental observations of particle migration in concentrated suspensions: couette flow. J Rheol 35(5):773–795 Abbott JR, Tetlow N, Graham AL, Altobelli SA, Fukushima E, Mondy LA, Stephens ST (1991) Experimental observations of particle migration in concentrated suspensions: couette flow. J Rheol 35(5):773–795
325.
Zurück zum Zitat Hookham P (1986) Concentration and velocity measurements in suspensions flowing through a rectangular channel. PhD thesis, California Institute of Technology Hookham P (1986) Concentration and velocity measurements in suspensions flowing through a rectangular channel. PhD thesis, California Institute of Technology
326.
Zurück zum Zitat Sinton SW, Chow AW (1991) NMR flow imaging of fluids and solid suspensions in Poiseuille flow. J Rheol 35(5):735–773 Sinton SW, Chow AW (1991) NMR flow imaging of fluids and solid suspensions in Poiseuille flow. J Rheol 35(5):735–773
327.
Zurück zum Zitat Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive model for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluid A 4:30–40MATH Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive model for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluid A 4:30–40MATH
328.
Zurück zum Zitat Chow AW, Sinton SW, Iwamiya JH, Stephens TS (1994) Shear-induced migration in couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys Fluid A 6:2561–2676 Chow AW, Sinton SW, Iwamiya JH, Stephens TS (1994) Shear-induced migration in couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys Fluid A 6:2561–2676
329.
Zurück zum Zitat Richardson JF, Zaki WN (1954) Sedimentation and fluidization: Part I. Trans Inst Chem Eng 32:35–47 Richardson JF, Zaki WN (1954) Sedimentation and fluidization: Part I. Trans Inst Chem Eng 32:35–47
330.
Zurück zum Zitat MacDonald MJ, Muller SJ (1996) Experimental study of shear-induced migration of polymers in dilute solutions. J Rheol 40(2):259–283 MacDonald MJ, Muller SJ (1996) Experimental study of shear-induced migration of polymers in dilute solutions. J Rheol 40(2):259–283
331.
Zurück zum Zitat Mills P, Snabre P (1995) Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. J Phys II 5:1597–1608 Mills P, Snabre P (1995) Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. J Phys II 5:1597–1608
332.
Zurück zum Zitat Subia SR, Ingber MS, Mondy LA, Altobelli SA, Graham AL (1998) Modelling of concentrated suspensions using a continuum constitutive equation. J Fluid Mech 373:193–219MATH Subia SR, Ingber MS, Mondy LA, Altobelli SA, Graham AL (1998) Modelling of concentrated suspensions using a continuum constitutive equation. J Fluid Mech 373:193–219MATH
333.
Zurück zum Zitat Krishnan GP, Beimfohr S, Leighton DT (1996) Shear-induced radial segregation in bidisperse suspensions. J Fluid Mech 321:371–393 Krishnan GP, Beimfohr S, Leighton DT (1996) Shear-induced radial segregation in bidisperse suspensions. J Fluid Mech 321:371–393
334.
Zurück zum Zitat L’Huillier D (2009) Migration of rigid particles in non-brownian viscous suspensions. Phys Fluids 21:023302 L’Huillier D (2009) Migration of rigid particles in non-brownian viscous suspensions. Phys Fluids 21:023302
335.
Zurück zum Zitat Nott PR, Guazzelli E, Pouliquen O (2011) The suspension balance model revisited. Phys Fluids 23:043304 Nott PR, Guazzelli E, Pouliquen O (2011) The suspension balance model revisited. Phys Fluids 23:043304
336.
Zurück zum Zitat Blanc F, Lemaire E, Meunier A, Peters F (2013) Microstructure in sheared Non-Brownian concentrated suspensions. J Rheol 57(1):273–293 Blanc F, Lemaire E, Meunier A, Peters F (2013) Microstructure in sheared Non-Brownian concentrated suspensions. J Rheol 57(1):273–293
337.
Zurück zum Zitat Brady JF (2001) Computer simulation of viscous suspensions. Chem Eng Sci 56(9):2921–2926 Brady JF (2001) Computer simulation of viscous suspensions. Chem Eng Sci 56(9):2921–2926
338.
Zurück zum Zitat Dratler DI, Schowalter WR (1996) Dynamic simulation of suspensions of non-Brownian hard spheres. J Fluid Mech 325:53–77MATH Dratler DI, Schowalter WR (1996) Dynamic simulation of suspensions of non-Brownian hard spheres. J Fluid Mech 325:53–77MATH
339.
Zurück zum Zitat Drazer G, Koplik J, Khusid B, Acrivos A (2002) Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions. J Fluid Mech 460:307–335MATHMathSciNet Drazer G, Koplik J, Khusid B, Acrivos A (2002) Deterministic and stochastic behaviour of non-Brownian spheres in sheared suspensions. J Fluid Mech 460:307–335MATHMathSciNet
340.
Zurück zum Zitat Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364MathSciNet Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364MathSciNet
341.
Zurück zum Zitat Hill RJ, Koch DL, Ladd AJC (2001) The first effects of fluid inertia on flows in ordered and random arrays of spheres. J Fluid Mech 448:213–241MATHMathSciNet Hill RJ, Koch DL, Ladd AJC (2001) The first effects of fluid inertia on flows in ordered and random arrays of spheres. J Fluid Mech 448:213–241MATHMathSciNet
342.
Zurück zum Zitat Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier fictitious domain method for particulate flows. Int J Multiphas Flow 25(5):755–794MATH Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier fictitious domain method for particulate flows. Int J Multiphas Flow 25(5):755–794MATH
343.
Zurück zum Zitat Singh P, Hesla TI, Joseph DD (2003) Distributed Lagrange multiplier method for particulate flows with collisions. Int J Multiphas Flow 29(3):495–509MATH Singh P, Hesla TI, Joseph DD (2003) Distributed Lagrange multiplier method for particulate flows with collisions. Int J Multiphas Flow 29(3):495–509MATH
344.
Zurück zum Zitat Nguyen N-Q, Ladd AJC (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66:046708 Nguyen N-Q, Ladd AJC (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66:046708
345.
Zurück zum Zitat Kromkamp J, van den Ende D, Kandhai D, van der Sman R, Boom R (2006) Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in couette flow. Chem Eng Sci 61(2):858–873 Kromkamp J, van den Ende D, Kandhai D, van der Sman R, Boom R (2006) Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in couette flow. Chem Eng Sci 61(2):858–873
346.
Zurück zum Zitat Maxey MR, Patel BK (2001) Localized force representations for particles sedimenting in stokes flow. Int J Multiphas Flow 27(9):1603–1626MATH Maxey MR, Patel BK (2001) Localized force representations for particles sedimenting in stokes flow. Int J Multiphas Flow 27(9):1603–1626MATH
347.
Zurück zum Zitat Lomholt S, Maxey MR (2003) Force-coupling method for particulate two-phase flow: stokes flow. J Comput Phys 184(2):381–405MATH Lomholt S, Maxey MR (2003) Force-coupling method for particulate two-phase flow: stokes flow. J Comput Phys 184(2):381–405MATH
348.
Zurück zum Zitat Dance SL, Maxey MR (2003) Particle density stratification in transient sedimentation. Phys Rev E 68:031403 Dance SL, Maxey MR (2003) Particle density stratification in transient sedimentation. Phys Rev E 68:031403
349.
Zurück zum Zitat Yeo K, Maxey MR (2010) Simulation of concentrated suspensions using the force-coupling method. J Comput Phys 229(6):2401–2421MATHMathSciNet Yeo K, Maxey MR (2010) Simulation of concentrated suspensions using the force-coupling method. J Comput Phys 229(6):2401–2421MATHMathSciNet
350.
Zurück zum Zitat Yeo K, Maxey MR (2010) Dynamics of concentrated suspensions of non-colloidal particles in couette flow. J Fluid Mech 649:205–231MATHMathSciNet Yeo K, Maxey MR (2010) Dynamics of concentrated suspensions of non-colloidal particles in couette flow. J Fluid Mech 649:205–231MATHMathSciNet
351.
Zurück zum Zitat Laun HM (1994) Normal stresses in extremely shear thickening polymer dispersions. J Non Newton Fluid Mech 54:87–108 Laun HM (1994) Normal stresses in extremely shear thickening polymer dispersions. J Non Newton Fluid Mech 54:87–108
352.
Zurück zum Zitat Tehrani M (1996) An experimental study of particle migration in pipe flow of viscoelastic fluids. J Rheol 40(6):1057–1077 Tehrani M (1996) An experimental study of particle migration in pipe flow of viscoelastic fluids. J Rheol 40(6):1057–1077
353.
Zurück zum Zitat Karnis A, Mason SG (1966) Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans Soc Rheol 10:571–592 Karnis A, Mason SG (1966) Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans Soc Rheol 10:571–592
354.
Zurück zum Zitat Gauthier F, Goldsmith HL, Mason SG (1971) Particle motions in non-Newtonian media II. Poiseuille flow. Trans Soc Rheol 15:297–330 Gauthier F, Goldsmith HL, Mason SG (1971) Particle motions in non-Newtonian media II. Poiseuille flow. Trans Soc Rheol 15:297–330
355.
Zurück zum Zitat Jefri MA, Zahed AH (1989) Elastic and viscous effects on particle migration in plane Poiseuille flow. J Rheol 33(5):691–708 Jefri MA, Zahed AH (1989) Elastic and viscous effects on particle migration in plane Poiseuille flow. J Rheol 33(5):691–708
356.
Zurück zum Zitat Binous H, Phillips RJ (1999) Dynamic simulation of one and two particles sedimenting in a viscoelastic suspension of FENE dumbbells. J Nonnewton Fluid Mech 83:93–130MATH Binous H, Phillips RJ (1999) Dynamic simulation of one and two particles sedimenting in a viscoelastic suspension of FENE dumbbells. J Nonnewton Fluid Mech 83:93–130MATH
357.
Zurück zum Zitat Lunsmann WJ, Genieser L, Armstrong RC, Brown RA (1993) Finite element analysis of steady viscoelastic flow around a sphere in a tube: calculations with constant-viscosity models. J Nonnewton Fluid Mech 48(1–2):63–99MATH Lunsmann WJ, Genieser L, Armstrong RC, Brown RA (1993) Finite element analysis of steady viscoelastic flow around a sphere in a tube: calculations with constant-viscosity models. J Nonnewton Fluid Mech 48(1–2):63–99MATH
358.
Zurück zum Zitat Walters K, Tanner RI (1992) The motion of a sphere through an elastic liquid. In: Chhabra RP, Dekee D (eds) Transport processes in bubbles, drops and particles. Hemisphere, New York, NY Walters K, Tanner RI (1992) The motion of a sphere through an elastic liquid. In: Chhabra RP, Dekee D (eds) Transport processes in bubbles, drops and particles. Hemisphere, New York, NY
359.
Zurück zum Zitat Solomon MJ, Muller SJ (1996) Flow past a sphere in polystyrene-based boger fluids: the effect on the drag coefficient of finite extensibility, solvent quality and polymer molecular weight. J Nonnewton Fluid Mech 62(1):81–94 Solomon MJ, Muller SJ (1996) Flow past a sphere in polystyrene-based boger fluids: the effect on the drag coefficient of finite extensibility, solvent quality and polymer molecular weight. J Nonnewton Fluid Mech 62(1):81–94
360.
Zurück zum Zitat Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer solutions past cylinders and spheres. J Nonnewton Fluid Mech 29:381–432MATH Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer solutions past cylinders and spheres. J Nonnewton Fluid Mech 29:381–432MATH
361.
Zurück zum Zitat Harlen OJ (1990) High Deborah number flow of a dilute polymer solution past a sphere falling along the axis of a cylindrical tube. J Nonnewton Fluid Mech 37(2–3):157–173MATH Harlen OJ (1990) High Deborah number flow of a dilute polymer solution past a sphere falling along the axis of a cylindrical tube. J Nonnewton Fluid Mech 37(2–3):157–173MATH
362.
Zurück zum Zitat Tiefenbruck G, Leal LG (1980) A note on rods falling near a vertical wall in a viscoelastic liquid. J Nonnewton Fluid Mech 6(3–4):201–218 Tiefenbruck G, Leal LG (1980) A note on rods falling near a vertical wall in a viscoelastic liquid. J Nonnewton Fluid Mech 6(3–4):201–218
363.
Zurück zum Zitat Chiba K, Song K-W, Horikawa A (1986) Motion of a slender body in quiescent polymer solutions. Rheol Acta 25(4):380–388 Chiba K, Song K-W, Horikawa A (1986) Motion of a slender body in quiescent polymer solutions. Rheol Acta 25(4):380–388
364.
Zurück zum Zitat Liu YJ, Joseph DD (1993) Sedimentation of particles in polymer solutions. J Fluid Mech 255:565–595 Liu YJ, Joseph DD (1993) Sedimentation of particles in polymer solutions. J Fluid Mech 255:565–595
365.
Zurück zum Zitat Kim S (1986) The motion of ellipsoids in a second-order fluid. J Nonnewton Fluid Mech 21(2):255–269MATH Kim S (1986) The motion of ellipsoids in a second-order fluid. J Nonnewton Fluid Mech 21(2):255–269MATH
366.
Zurück zum Zitat Brunn P (1977) Interaction of spheres in a viscoelastic fluid. Rheol Acta 16(5):461–475MATH Brunn P (1977) Interaction of spheres in a viscoelastic fluid. Rheol Acta 16(5):461–475MATH
367.
Zurück zum Zitat Riddle MJ, Narvaez C, Bird RB (1977) Interactions between two spheres falling along their line of centers in a viscoelastic fluid. J Nonnewton Fluid Mech 2(1):23–35 Riddle MJ, Narvaez C, Bird RB (1977) Interactions between two spheres falling along their line of centers in a viscoelastic fluid. J Nonnewton Fluid Mech 2(1):23–35
368.
Zurück zum Zitat Joseph DD, Liu YJ, Poletto M, Feng J (1994) Aggregation and dispersion of spheres falling in viscoelastic liquids. J Non Newton Fluid Mech 54:45 Joseph DD, Liu YJ, Poletto M, Feng J (1994) Aggregation and dispersion of spheres falling in viscoelastic liquids. J Non Newton Fluid Mech 54:45
369.
Zurück zum Zitat Gheissary G, van den Brule BHAA (1996) Unexpected phenomena observed in particle settling in non-Newtonian media. J Nonnewton Fluid Mech 67:1–18 Gheissary G, van den Brule BHAA (1996) Unexpected phenomena observed in particle settling in non-Newtonian media. J Nonnewton Fluid Mech 67:1–18
370.
Zurück zum Zitat Phillips RJ (1996) Dynamic simulation of hydrodynamically interacting spheres in a quiescent second-order fluid. J Fluid Mech 315:345–365MATH Phillips RJ (1996) Dynamic simulation of hydrodynamically interacting spheres in a quiescent second-order fluid. J Fluid Mech 315:345–365MATH
371.
Zurück zum Zitat Binous H, Phillips RJ (1999) The effect of sphere-wall interactions on particle motion in a viscoelastic suspension of FENE dumbbells. J Nonnewton Fluid Mech 85:63–92MATH Binous H, Phillips RJ (1999) The effect of sphere-wall interactions on particle motion in a viscoelastic suspension of FENE dumbbells. J Nonnewton Fluid Mech 85:63–92MATH
372.
Zurück zum Zitat Blake JR (1971) A note on the image system for a stokeslet in a no-slip boundary. Proc Camb Phil Soc 70:303–310MATH Blake JR (1971) A note on the image system for a stokeslet in a no-slip boundary. Proc Camb Phil Soc 70:303–310MATH
373.
Zurück zum Zitat Joseph DD, Liu YJ (1993) Orientation of long bodies falling in a viscoelastic liquid. J Rheol 37:961–983MathSciNet Joseph DD, Liu YJ (1993) Orientation of long bodies falling in a viscoelastic liquid. J Rheol 37:961–983MathSciNet
374.
Zurück zum Zitat Huang PY, Feng J, Hu HH, Joseph DD (1997) Direct simulation of the motion of solid particles in couette and Poiseuille flows of viscoelastic fluids. J Fluid Mech 343:73–94MATHMathSciNet Huang PY, Feng J, Hu HH, Joseph DD (1997) Direct simulation of the motion of solid particles in couette and Poiseuille flows of viscoelastic fluids. J Fluid Mech 343:73–94MATHMathSciNet
375.
Zurück zum Zitat Huang PY, Joseph DD (2000) Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids. J Non Newton Fluid Mech 90:159–185MATH Huang PY, Joseph DD (2000) Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids. J Non Newton Fluid Mech 90:159–185MATH
376.
Zurück zum Zitat Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Eng 381:63–87MATH Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Eng 381:63–87MATH
377.
Zurück zum Zitat Ramachandran A, Leighton DT (2008) The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions. J Fluid Mech 603:207–243MATHMathSciNet Ramachandran A, Leighton DT (2008) The influence of secondary flows induced by normal stress differences on the shear-induced migration of particles in concentrated suspensions. J Fluid Mech 603:207–243MATHMathSciNet
378.
Zurück zum Zitat Zrehen A, Ramachandran A (2013) Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit. Phys Rev Lett 110:018306 Zrehen A, Ramachandran A (2013) Demonstration of secondary currents in the pressure-driven flow of a concentrated suspension through a square conduit. Phys Rev Lett 110:018306
379.
Zurück zum Zitat Belt RJ, Daalmans ACLM, Portela LM (2011) Experimental study of particle driven secondary flow in turbulent pipe flows. J Fluid Mech 709:1–36 Belt RJ, Daalmans ACLM, Portela LM (2011) Experimental study of particle driven secondary flow in turbulent pipe flows. J Fluid Mech 709:1–36
380.
Zurück zum Zitat Hetsroni G (1989) Particle-turbulence interaction. Int J Multiphas Flow 15(5):735–746 Hetsroni G (1989) Particle-turbulence interaction. Int J Multiphas Flow 15(5):735–746
381.
Zurück zum Zitat Gore RA, Crowe CT (1991) Modulation of turbulence by a dispersed phase. J Fluid Eng 113(2):304–307 Gore RA, Crowe CT (1991) Modulation of turbulence by a dispersed phase. J Fluid Eng 113(2):304–307
382.
Zurück zum Zitat Huber N, Sommerfeld M (1994) Characterization of the cross-sectional particle concentration distribution in pneumatic conveying systems. Powder Tech 79:191–210 Huber N, Sommerfeld M (1994) Characterization of the cross-sectional particle concentration distribution in pneumatic conveying systems. Powder Tech 79:191–210
383.
Zurück zum Zitat Lee SL, Durst F (1982) On the motion of particles in turbulent duct flows. Int J Multiphas Flow 8(2):125–146 Lee SL, Durst F (1982) On the motion of particles in turbulent duct flows. Int J Multiphas Flow 8(2):125–146
384.
Zurück zum Zitat Sommerfeld M (1990) Numerical simulation of the particle dispersion in turbulent flow: the importance of particle lift forces and particle/wall collision models. In: Celik I, Hughes D, Crowe CT, Lankford D (eds) Numerical methods for multiphase flows, vol 91. ASME, New York, NY, pp 1–18 Sommerfeld M (1990) Numerical simulation of the particle dispersion in turbulent flow: the importance of particle lift forces and particle/wall collision models. In: Celik I, Hughes D, Crowe CT, Lankford D (eds) Numerical methods for multiphase flows, vol 91. ASME, New York, NY, pp 1–18
385.
Zurück zum Zitat Saffmann PG (1965) The lift on a small sphere in a shear flow. J Fluid Mech 22:385–400 Saffmann PG (1965) The lift on a small sphere in a shear flow. J Fluid Mech 22:385–400
386.
Zurück zum Zitat Mei R (1992) An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int J Multiphas Flow 18(1):145–147MATH Mei R (1992) An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int J Multiphas Flow 18(1):145–147MATH
387.
Zurück zum Zitat Matsumoto S, Saito S (1970) Monte Carlo simulation of horizontal pneumatic conveying based on the rough wall model. J Chem Eng Jpn 3:223–230 Matsumoto S, Saito S (1970) Monte Carlo simulation of horizontal pneumatic conveying based on the rough wall model. J Chem Eng Jpn 3:223–230
388.
Zurück zum Zitat Sommerfeld M (1992) Modelling of particle-wall collisions in confined gas particle flows. Int J Multiphas Flow 18(6):905–926MATH Sommerfeld M (1992) Modelling of particle-wall collisions in confined gas particle flows. Int J Multiphas Flow 18(6):905–926MATH
389.
Zurück zum Zitat Tsuji Y, Shen NY, Morikawa Y (1991) Lagrangian simulation of dilute gas-solid flows in a horizontal pipe. Adv Powder Tech 2:63–81 Tsuji Y, Shen NY, Morikawa Y (1991) Lagrangian simulation of dilute gas-solid flows in a horizontal pipe. Adv Powder Tech 2:63–81
390.
Zurück zum Zitat Oesterle B, Petitjean A (1993) Simulation of particle-to-particle interactions in gas-solid flows. Int J Multiphas Flow 19(1):199–211MATH Oesterle B, Petitjean A (1993) Simulation of particle-to-particle interactions in gas-solid flows. Int J Multiphas Flow 19(1):199–211MATH
391.
Zurück zum Zitat Huber N, Sommerfeld M (1998) Modelling and numerical calculation of dilute-phase pneumatic conveying in pipe systems. Powder Tech 99:90–101 Huber N, Sommerfeld M (1998) Modelling and numerical calculation of dilute-phase pneumatic conveying in pipe systems. Powder Tech 99:90–101
392.
Zurück zum Zitat Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comp Meth Appl Mech Eng 3:269–289MATH Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comp Meth Appl Mech Eng 3:269–289MATH
393.
Zurück zum Zitat Li Y, McLaughlin JB, Kontomaris K, Portela L (2001) Numerical simulation of particle-laden turbulent channel flow. Phys Fluid 13(10):2957–2967 Li Y, McLaughlin JB, Kontomaris K, Portela L (2001) Numerical simulation of particle-laden turbulent channel flow. Phys Fluid 13(10):2957–2967
394.
Zurück zum Zitat Flores AG, Crowe KE, Griffith P (1995) Gas-phase secondary flow in horizontal, stratified and annular two-phase flow. Int J Multiphas Flow 21(2):207–221MATH Flores AG, Crowe KE, Griffith P (1995) Gas-phase secondary flow in horizontal, stratified and annular two-phase flow. Int J Multiphas Flow 21(2):207–221MATH
395.
Zurück zum Zitat Jayanti S, Hewitt GF, White SP (1990) Time-dependent behaviour of the liquid film in horizontal annular flow. Int J Multiphas Flow 16(6):1097–1116MATH Jayanti S, Hewitt GF, White SP (1990) Time-dependent behaviour of the liquid film in horizontal annular flow. Int J Multiphas Flow 16(6):1097–1116MATH
396.
Zurück zum Zitat Jayanti S, Hewitt GF (1996) Response of turbulent flow to abrupt changes in surface roughness and its relevance in horizontal annular flow. Appl Math Model 20:244–251MATH Jayanti S, Hewitt GF (1996) Response of turbulent flow to abrupt changes in surface roughness and its relevance in horizontal annular flow. Appl Math Model 20:244–251MATH
397.
Zurück zum Zitat Dykhno LA, Williams LR, Hanratty TJ (1994) Maps of mean gas velocity for stratified flows with and without atomization. Int J Multiphas Flow 20(4):691–702MATH Dykhno LA, Williams LR, Hanratty TJ (1994) Maps of mean gas velocity for stratified flows with and without atomization. Int J Multiphas Flow 20(4):691–702MATH
398.
Zurück zum Zitat Williams LR, Dykhno LA, Hanratty TJ (1996) Droplet flux contributions and entrainment in horizontal gas–liquid flows. Int J Multiphas Flow 22(1):1–18MATH Williams LR, Dykhno LA, Hanratty TJ (1996) Droplet flux contributions and entrainment in horizontal gas–liquid flows. Int J Multiphas Flow 22(1):1–18MATH
399.
Zurück zum Zitat Taitel Y, Dukler A (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J 22:47–55 Taitel Y, Dukler A (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J 22:47–55
400.
Zurück zum Zitat Van’t Westende JMC, Belt RJ, Portela LM, Mudde RF, Oliemans RVA (2007) Effect of secondary flow on droplet distribution and deposition in horizontal annular pipe flow. Int J Multiphas Flow 33(1):67–85 Van’t Westende JMC, Belt RJ, Portela LM, Mudde RF, Oliemans RVA (2007) Effect of secondary flow on droplet distribution and deposition in horizontal annular pipe flow. Int J Multiphas Flow 33(1):67–85
401.
Zurück zum Zitat Lin TF, Jones OC, Lahey RT, Block RT, Murase M (1985) Film thickness distribution for gas–liquid annular flow in a horizontal pipe. Physicochem Hydrodyn 6:179–195 Lin TF, Jones OC, Lahey RT, Block RT, Murase M (1985) Film thickness distribution for gas–liquid annular flow in a horizontal pipe. Physicochem Hydrodyn 6:179–195
402.
Zurück zum Zitat Young J, Leeming A (1997) A theory of particle deposition in turbulent pipe flow. J Fluid Mech 340:129–159MATH Young J, Leeming A (1997) A theory of particle deposition in turbulent pipe flow. J Fluid Mech 340:129–159MATH
403.
Zurück zum Zitat Suzanne C (1985) Structure de l’ Écoulement Stratifié de Gaz et de Liquide en Canal Rectangulaire, Thèse de Docteur ès Sciences, Institut National Polytechnique de Toulouse Suzanne C (1985) Structure de l’ Écoulement Stratifié de Gaz et de Liquide en Canal Rectangulaire, Thèse de Docteur ès Sciences, Institut National Polytechnique de Toulouse
404.
Zurück zum Zitat Nordsveen M, Bertelsen AF (1997) Wave induced secondary motions in stratified duct flow. Int J Multiphas Flow 23(3):503–522MATH Nordsveen M, Bertelsen AF (1997) Wave induced secondary motions in stratified duct flow. Int J Multiphas Flow 23(3):503–522MATH
405.
Zurück zum Zitat Andrews DG, McIntyre ME (1978) An exact theory of non-linear waves on a Lagrangian-mean flow. J Fluid Mech 89:609–646MATHMathSciNet Andrews DG, McIntyre ME (1978) An exact theory of non-linear waves on a Lagrangian-mean flow. J Fluid Mech 89:609–646MATHMathSciNet
406.
Zurück zum Zitat Langmuir I (1938) Surface motion of water induced by wind. Science 87:119–123 Langmuir I (1938) Surface motion of water induced by wind. Science 87:119–123
407.
Zurück zum Zitat Nordsveen M, Bertelsen AF (1996) Waves and secondary flows in stratified gas/liquid duct flow. In: Grue J, Gjevik B, Weber JE (eds) Waves and non-linear processes in hydrodynamics. Kluwer Academic Publishers, Dordrecht Nordsveen M, Bertelsen AF (1996) Waves and secondary flows in stratified gas/liquid duct flow. In: Grue J, Gjevik B, Weber JE (eds) Waves and non-linear processes in hydrodynamics. Kluwer Academic Publishers, Dordrecht
Metadaten
Titel
Transversal Flow Field of Particle-Laden Linear Fluids
verfasst von
Dennis A. Siginer
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-02426-4_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.