Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2014

01.10.2014 | Research Paper

Trimodal charge transport in polar liquid-based dilute nanoparticulate colloidal dispersions

verfasst von: Purbarun Dhar, Arvind Pattamatta, Sarit K. Das

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dominant modes of charge transport in variant polar liquid-based nanoparticulate colloidal dispersions (dilute) have been theorized. Theories formulating electrical characteristics of colloids have often been found to over- or under-predict charge transport in dilute suspensions of nanoparticles in polar fluids owing to grossly different mechanistic behaviors of concentrated systems. Three major interacting modes with independent yet simultaneous existence have been proposed and found to be consistent with analyses of experimental data. Electric double layer (EDL) formation at nanoparticle–fluid interface-conjugated electrophoresis under the influence of the electric field has been determined as one important mode of charge transport. Nanoparticle polarization due to short-range field non-uniformity caused by the EDL with consequent particle motion due to inter-particle electrostatic interactions acts as another mode of transport. Coupled electro-thermal diffusion arising out of Brownian randomization in the presence of the electric field has been determined as the third dominant mode. An analytical model based on discrete interactions of the charged particle–fluid domains explains the various behavioral aspects of such dispersions, as observed and validated from detailed experimental analysis. The analysis is also predictive of the dominance and behavior of the three modes with important nanocolloidal parameters such as temperature and concentration.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anoop KB, Kabelac S, Sundararajan T, Das SK (2009) Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J Appl Phys 106:034907–034909CrossRef Anoop KB, Kabelac S, Sundararajan T, Das SK (2009) Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J Appl Phys 106:034907–034909CrossRef
Zurück zum Zitat Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312–094312–094312–094314CrossRef Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312–094312–094312–094314CrossRef
Zurück zum Zitat Cametti C (2010) Dielectric spectra of ionic water-in-oil microemulsions below percolation: frequency dependence behavior. Phys Rev E 81:031403CrossRef Cametti C (2010) Dielectric spectra of ionic water-in-oil microemulsions below percolation: frequency dependence behavior. Phys Rev E 81:031403CrossRef
Zurück zum Zitat Carrique F, Arroyo F, Delgado A (2001) Electrokinetics of concentrated suspensions of spherical colloidal particles: effect of a dynamic stern layer on electrophoresis and DC conductivity. J Colloid Interface Sci 243:351–361CrossRef Carrique F, Arroyo F, Delgado A (2001) Electrokinetics of concentrated suspensions of spherical colloidal particles: effect of a dynamic stern layer on electrophoresis and DC conductivity. J Colloid Interface Sci 243:351–361CrossRef
Zurück zum Zitat Chakraborty S, Padhy S (2008) Anomalous electrical conductivity of nanoscale colloidal suspensions. ACS Nano 2:2029–2036CrossRef Chakraborty S, Padhy S (2008) Anomalous electrical conductivity of nanoscale colloidal suspensions. ACS Nano 2:2029–2036CrossRef
Zurück zum Zitat Curtis HJ, Fricke H (1935) The electrical conductance of colloidal solutions at high frequencies. Phys Rev 48:775-775CrossRef Curtis HJ, Fricke H (1935) The electrical conductance of colloidal solutions at high frequencies. Phys Rev 48:775-775CrossRef
Zurück zum Zitat Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRef Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574CrossRef
Zurück zum Zitat Dhar P, Ansari M, Gupta S, Siva VM, Pradeep T, Pattamatta A, Das S (2013a) Percolation network dynamicity and sheet dynamics governed viscous behavior of polydispersed graphene nanosheet suspensions. J Nanopart Res 15:1–12CrossRef Dhar P, Ansari M, Gupta S, Siva VM, Pradeep T, Pattamatta A, Das S (2013a) Percolation network dynamicity and sheet dynamics governed viscous behavior of polydispersed graphene nanosheet suspensions. J Nanopart Res 15:1–12CrossRef
Zurück zum Zitat Dhar P, Sen Gupta S, Chakraborty S, Pattamatta A, Das SK (2013b) The role of percolation and sheet dynamics during heat conduction in poly-dispersed graphene nanofluids. Appl Phys Lett 102:163114–163114–163114–163115CrossRef Dhar P, Sen Gupta S, Chakraborty S, Pattamatta A, Das SK (2013b) The role of percolation and sheet dynamics during heat conduction in poly-dispersed graphene nanofluids. Appl Phys Lett 102:163114–163114–163114–163115CrossRef
Zurück zum Zitat Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):32CrossRef Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):32CrossRef
Zurück zum Zitat Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51:1431–1438CrossRef Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51:1431–1438CrossRef
Zurück zum Zitat Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330CrossRef Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330CrossRef
Zurück zum Zitat Goldstein RE, Halsey TC, Leibig M (1991) Thermodynamics of rough colloidal surfaces. Phys Rev Lett 66:1551–1554CrossRef Goldstein RE, Halsey TC, Leibig M (1991) Thermodynamics of rough colloidal surfaces. Phys Rev Lett 66:1551–1554CrossRef
Zurück zum Zitat Hückel E (1924) Zur theorie konzentrierterer wässeriger Lösungen starker elektrolyte. Physik Z 25:204 Hückel E (1924) Zur theorie konzentrierterer wässeriger Lösungen starker elektrolyte. Physik Z 25:204
Zurück zum Zitat Khusid B, Acrivos A (1996) Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions. Phys Rev E 54:5428–5435CrossRef Khusid B, Acrivos A (1996) Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions. Phys Rev E 54:5428–5435CrossRef
Zurück zum Zitat Kumar DH, Patel HE, Kumar VR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301CrossRef Kumar DH, Patel HE, Kumar VR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93:144301CrossRef
Zurück zum Zitat Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers, J Phys Soc of Japan 14–4 Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers, J Phys Soc of Japan 14–4
Zurück zum Zitat Last BJ, Thouless DJ (1971) Percolation theory and electrical conductivity. Phys Rev Lett 27:1719–1721CrossRef Last BJ, Thouless DJ (1971) Percolation theory and electrical conductivity. Phys Rev Lett 27:1719–1721CrossRef
Zurück zum Zitat Lebovka NI, Tarafdar S, Vygornitskii NV (2006) Computer simulation of electrical conductivity of colloidal dispersions during aggregation. Phys Rev E 73:031402CrossRef Lebovka NI, Tarafdar S, Vygornitskii NV (2006) Computer simulation of electrical conductivity of colloidal dispersions during aggregation. Phys Rev E 73:031402CrossRef
Zurück zum Zitat Makino K, Ohshima H (2010) Electrophoretic mobility of a colloidal particle with constant surface charge density. Langmuir 26(23):18016CrossRef Makino K, Ohshima H (2010) Electrophoretic mobility of a colloidal particle with constant surface charge density. Langmuir 26(23):18016CrossRef
Zurück zum Zitat Matijevic E (1971) Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. Surf Colloid Sci 3 Matijevic E (1971) Characterization of aqueous colloids by their electrical double-layer and intrinsic surface chemical properties. Surf Colloid Sci 3
Zurück zum Zitat Miles JB Jr, Robertson HP (1932) The dielectric behavior of colloidal particles with an electric double-layer, physical. Review 40:583–591CrossRef Miles JB Jr, Robertson HP (1932) The dielectric behavior of colloidal particles with an electric double-layer, physical. Review 40:583–591CrossRef
Zurück zum Zitat Minea A, Luciu R (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13:977–985CrossRef Minea A, Luciu R (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13:977–985CrossRef
Zurück zum Zitat Mittal M, Lele PP, Kaler EW, Furst EM (2008) Polarization and interactions of colloidal particles in ac electric fields. J Chem Phys 129 Mittal M, Lele PP, Kaler EW, Furst EM (2008) Polarization and interactions of colloidal particles in ac electric fields. J Chem Phys 129
Zurück zum Zitat Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568CrossRef Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568CrossRef
Zurück zum Zitat Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J. Colloids Interface Sci 90:17CrossRef Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J. Colloids Interface Sci 90:17CrossRef
Zurück zum Zitat Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRef Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170CrossRef
Zurück zum Zitat Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931–2933CrossRef Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931–2933CrossRef
Zurück zum Zitat Patel HE, Sundararajan T, Das SK (2010) An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res 12:1015–1031CrossRef Patel HE, Sundararajan T, Das SK (2010) An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res 12:1015–1031CrossRef
Zurück zum Zitat Revil A (1999) Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: a unified model. J Colloid Interface Sci 212:503–522CrossRef Revil A (1999) Ionic diffusivity, electrical conductivity, membrane and thermoelectric potentials in colloids and granular porous media: a unified model. J Colloid Interface Sci 212:503–522CrossRef
Zurück zum Zitat Sarojini KG, Manoj SV, Singh PK, Pradeep T, Das SK (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A 417:39–46CrossRef Sarojini KG, Manoj SV, Singh PK, Pradeep T, Das SK (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A 417:39–46CrossRef
Zurück zum Zitat Sastry NNV, Bhunia A, Sundararajan T, Das SK (2008) Predicting the effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology 19:055704CrossRef Sastry NNV, Bhunia A, Sundararajan T, Das SK (2008) Predicting the effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology 19:055704CrossRef
Zurück zum Zitat Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRef Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47:5181–5188CrossRef
Zurück zum Zitat Wen D, Ding Y (2005) Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluidics Nanofluidics 1:183–189CrossRef Wen D, Ding Y (2005) Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels. Microfluidics Nanofluidics 1:183–189CrossRef
Zurück zum Zitat Wong KFV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19:345702CrossRef Wong KFV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19:345702CrossRef
Zurück zum Zitat Xuan Y, Li Q (2002) Investigation convective heat transfer and flow features of nanofluids. J Heat Transfer 125:151–155CrossRef Xuan Y, Li Q (2002) Investigation convective heat transfer and flow features of nanofluids. J Heat Transfer 125:151–155CrossRef
Zurück zum Zitat Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599CrossRef Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599CrossRef
Metadaten
Titel
Trimodal charge transport in polar liquid-based dilute nanoparticulate colloidal dispersions
verfasst von
Purbarun Dhar
Arvind Pattamatta
Sarit K. Das
Publikationsdatum
01.10.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2644-3

Weitere Artikel der Ausgabe 10/2014

Journal of Nanoparticle Research 10/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.