Skip to main content
Erschienen in: Journal of Nanoparticle Research 4/2012

01.03.2012 | Research Paper

Tuning the electronic and optical properties of hydrogen-terminated Si nanocluster by uniaxial compression

verfasst von: Xue Jiang, Jijun Zhao, Xin Jiang

Erschienen in: Journal of Nanoparticle Research | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structural, electronic, and optical properties of hydrogen-terminated Si nanocluster (Si66H64) with a diameter of 1.3 nm under uniaxial compression have been investigated by means of density functional theory calculations. The structural deformation of silicon nanoparticle under axial strain manifests as reduction of cluster symmetry, contraction of bond length, and broadening of bond angle distribution. Such strain-induced distortion modifies the highest occupied molecular orbital (HOMO) the lowest unoccupied molecular orbital (LUMO) eigenvalues, HOMO–LUMO gap, and isosurfaces of HOMO and LUMO wavefunctions, that is, the HOMO–LUMO gap diminishes as strain increases and isosurface of HOMO and LUMO wavefunctions redistributes along the strain orientation. Moreover, uniaxial compression has a strong influence on the optical absorption spectra of the Si66H64 cluster. With increasing strain, the onset of absorption spectra red shifts. Interestingly, the strain-tunable photoluminescence in Si nanoparticle (Si66H64) can cover a broad spectrum (i.e., from visible light to ultraviolet), implying an exciting possibility for optical devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beck TL (2000) Real-space mesh techniques in density-functional theory. Rev Mod Phys 72:1041CrossRef Beck TL (2000) Real-space mesh techniques in density-functional theory. Rev Mod Phys 72:1041CrossRef
Zurück zum Zitat Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef
Zurück zum Zitat Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843CrossRef Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843CrossRef
Zurück zum Zitat Benedict LX, Puzder A, Williamson AJ, Grossman JC, Galli G, Klepeis JE, Raty JY, Pankratov O (2003) Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation. Phys Rev B 68:085310CrossRef Benedict LX, Puzder A, Williamson AJ, Grossman JC, Galli G, Klepeis JE, Raty JY, Pankratov O (2003) Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation. Phys Rev B 68:085310CrossRef
Zurück zum Zitat Bowler DR et al (1998) Hydrogen diffusion on Si(001) studied with the local density approximation and tight binding. J Phys Condens Matter 10:3719CrossRef Bowler DR et al (1998) Hydrogen diffusion on Si(001) studied with the local density approximation and tight binding. J Phys Condens Matter 10:3719CrossRef
Zurück zum Zitat Buda F, Fasolino A (1999) Strained semiconductor clusters in sodalite. Phys Rev B 60:6131CrossRef Buda F, Fasolino A (1999) Strained semiconductor clusters in sodalite. Phys Rev B 60:6131CrossRef
Zurück zum Zitat Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308CrossRef Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308CrossRef
Zurück zum Zitat Degoli E, Cantele G, Luppi E, Magri R, Ninno D, Bisi O, Ossicini S (2004) Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state. Phys Rev B 69:155411CrossRef Degoli E, Cantele G, Luppi E, Magri R, Ninno D, Bisi O, Ossicini S (2004) Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state. Phys Rev B 69:155411CrossRef
Zurück zum Zitat Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRef Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRef
Zurück zum Zitat Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762CrossRef Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762CrossRef
Zurück zum Zitat Elabsy AM, Degheidy AR, Abdelwahed HG, Elkenany EB (2010) Pressure response to electronic structures of bulk semiconductors at room temperature. Phys B 405:3709–3713CrossRef Elabsy AM, Degheidy AR, Abdelwahed HG, Elkenany EB (2010) Pressure response to electronic structures of bulk semiconductors at room temperature. Phys B 405:3709–3713CrossRef
Zurück zum Zitat Feher F (1977) Molekulspektroskopische untersuchungen auf dem gebiet der silane und der heterocyclischen sulfane. Westdeutscher, Koln Feher F (1977) Molekulspektroskopische untersuchungen auf dem gebiet der silane und der heterocyclischen sulfane. Westdeutscher, Koln
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., Wallingford
Zurück zum Zitat Furukawa S, Miyasato T (1988) Quantum size effects on the optical band gap of microcrystalline Si:H. Phys Rev B 38:5726CrossRef Furukawa S, Miyasato T (1988) Quantum size effects on the optical band gap of microcrystalline Si:H. Phys Rev B 38:5726CrossRef
Zurück zum Zitat Garoufalis CS, Zdetsis AD, Grimme S (2001) High level Ab initio calculations of the optical gap of small silicon quantum dots. Phys Rev Lett 87:276402CrossRef Garoufalis CS, Zdetsis AD, Grimme S (2001) High level Ab initio calculations of the optical gap of small silicon quantum dots. Phys Rev Lett 87:276402CrossRef
Zurück zum Zitat Green M (2004) Semiconductor quantum dots as biological imaging agents. Angew Chem Int Ed 43:4129–4131CrossRef Green M (2004) Semiconductor quantum dots as biological imaging agents. Angew Chem Int Ed 43:4129–4131CrossRef
Zurück zum Zitat Hamers RJ, Wang Y (1996) Atomically-resolved studies of the chemistry and bonding at Silicon surfaces. Chem Rev 96:1261–1290CrossRef Hamers RJ, Wang Y (1996) Atomically-resolved studies of the chemistry and bonding at Silicon surfaces. Chem Rev 96:1261–1290CrossRef
Zurück zum Zitat Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B Condens Matter 31:1770CrossRef Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B Condens Matter 31:1770CrossRef
Zurück zum Zitat Itoh U, Toyoshima Y, Onuki H, Washida N, Ibuki T (1986) Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and S3H8. J Chem Phys 85:4867–4872CrossRef Itoh U, Toyoshima Y, Onuki H, Washida N, Ibuki T (1986) Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and S3H8. J Chem Phys 85:4867–4872CrossRef
Zurück zum Zitat Jiang X, Zhao J, Zhuang C, Wen B, Jiang X (2010) Mechanical and electronic properties of ultrathin nanodiamonds under uniaxial compressions. Diam Relat Mater 19:21–25CrossRef Jiang X, Zhao J, Zhuang C, Wen B, Jiang X (2010) Mechanical and electronic properties of ultrathin nanodiamonds under uniaxial compressions. Diam Relat Mater 19:21–25CrossRef
Zurück zum Zitat Jurbergs D, Rogojina E, Mangolini L, Kortshagen U (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett 88:233113–233116CrossRef Jurbergs D, Rogojina E, Mangolini L, Kortshagen U (2006) Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett 88:233113–233116CrossRef
Zurück zum Zitat Kang Z, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21:661–664CrossRef Kang Z, Liu Y, Tsang CHA, Ma DDD, Fan X, Wong NB, Lee ST (2009) Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv Mater 21:661–664CrossRef
Zurück zum Zitat Kenton AC, Ribarsky MW (1981) Ab initio calculations on hydrogen-bounded silicon clusters. Phys Rev B 23:2897–2910CrossRef Kenton AC, Ribarsky MW (1981) Ab initio calculations on hydrogen-bounded silicon clusters. Phys Rev B 23:2897–2910CrossRef
Zurück zum Zitat Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New Jersey Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley, New Jersey
Zurück zum Zitat Lehtonen O, Sundholm D (2005) Density-functional studies of excited states of silicon nanoclusters. Phys Rev B 72:085424CrossRef Lehtonen O, Sundholm D (2005) Density-functional studies of excited states of silicon nanoclusters. Phys Rev B 72:085424CrossRef
Zurück zum Zitat Lehtonen O, Sundholm D (2006a) Coupled-cluster studies of the electronic excitation spectra of silanes. J Chem Phys 125:144314–144319CrossRef Lehtonen O, Sundholm D (2006a) Coupled-cluster studies of the electronic excitation spectra of silanes. J Chem Phys 125:144314–144319CrossRef
Zurück zum Zitat Lehtonen O, Sundholm D (2006b) Optical properties of sila-adamantane nanoclusters from density-functional theory. Phys Rev B 74:045433CrossRef Lehtonen O, Sundholm D (2006b) Optical properties of sila-adamantane nanoclusters from density-functional theory. Phys Rev B 74:045433CrossRef
Zurück zum Zitat Li YH, Gong XG, Wei SH (2006) Ab initio all-electron calculation of absolute volume deformation potentials of IV–IV, III–V, and II–VI semiconductors: the chemical trends. Phys Rev B 73:245206CrossRef Li YH, Gong XG, Wei SH (2006) Ab initio all-electron calculation of absolute volume deformation potentials of IV–IV, III–V, and II–VI semiconductors: the chemical trends. Phys Rev B 73:245206CrossRef
Zurück zum Zitat Mavros MG, Micha DA, Kilin DS (2011) Optical properties of doped silicon quantum dots with crystalline and amorphous structures. J Phys Chem C 115:19529–19537CrossRef Mavros MG, Micha DA, Kilin DS (2011) Optical properties of doped silicon quantum dots with crystalline and amorphous structures. J Phys Chem C 115:19529–19537CrossRef
Zurück zum Zitat Nayfeh M, Akcakir O, Therrien J, Yamani Z, Barry N, Yu W, Gratton E (1999) Highly nonlinear photoluminescence threshold in porous silicon. Appl Phys Lett 75:4112–4114CrossRef Nayfeh M, Akcakir O, Therrien J, Yamani Z, Barry N, Yu W, Gratton E (1999) Highly nonlinear photoluminescence threshold in porous silicon. Appl Phys Lett 75:4112–4114CrossRef
Zurück zum Zitat Nayfeh MH, Barry N, Therrien J, Akcakir O, Gratton E, Belomoin G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl Phys Lett 78:1131–1133CrossRef Nayfeh MH, Barry N, Therrien J, Akcakir O, Gratton E, Belomoin G (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl Phys Lett 78:1131–1133CrossRef
Zurück zum Zitat Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601CrossRef Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601CrossRef
Zurück zum Zitat Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336CrossRef Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336CrossRef
Zurück zum Zitat Peng XH, Ganti S, Alizadeh A, Sharma P, Kumar SK, Nayak SK (2006) Strain-engineered photoluminescence of silicon nanoclusters. Phys Rev B 74:035339CrossRef Peng XH, Ganti S, Alizadeh A, Sharma P, Kumar SK, Nayak SK (2006) Strain-engineered photoluminescence of silicon nanoclusters. Phys Rev B 74:035339CrossRef
Zurück zum Zitat Peng XH et al (2007) First-principles investigation of strain effects on the energy gaps in silicon nanoclusters. J Phys Condens Matter 19:266212CrossRef Peng XH et al (2007) First-principles investigation of strain effects on the energy gaps in silicon nanoclusters. J Phys Condens Matter 19:266212CrossRef
Zurück zum Zitat Puzder A, Williamson AJ, Grossman JC, Galli G (2003) Computational studies of the optical emission of silicon nanocrystals. J Am Chem Soc 125:2786–2791CrossRef Puzder A, Williamson AJ, Grossman JC, Galli G (2003) Computational studies of the optical emission of silicon nanocrystals. J Am Chem Soc 125:2786–2791CrossRef
Zurück zum Zitat Rosenberg A, Ozier I (1976) Collision-induced absorption of gaseous silane in the far infrared. J Chem Phys 65:418–424CrossRef Rosenberg A, Ozier I (1976) Collision-induced absorption of gaseous silane in the far infrared. J Chem Phys 65:418–424CrossRef
Zurück zum Zitat Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, Tilley RD (2011) Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 3:3364–3370CrossRef Shiohara A, Prabakar S, Faramus A, Hsu CY, Lai PS, Northcote PT, Tilley RD (2011) Sized controlled synthesis, purification, and cell studies with silicon quantum dots. Nanoscale 3:3364–3370CrossRef
Zurück zum Zitat Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63CrossRef Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63CrossRef
Zurück zum Zitat Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578CrossRef Takagahara T, Takeda K (1992) Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys Rev B 46:15578CrossRef
Zurück zum Zitat Thean A, Leburton JP (2001) Strain effect in large silicon nanocrystal quantum dots. Appl Phys Lett 79:1030–1032CrossRef Thean A, Leburton JP (2001) Strain effect in large silicon nanocrystal quantum dots. Appl Phys Lett 79:1030–1032CrossRef
Zurück zum Zitat Vasiliev I, Chelikowsky JR, Martin RM (2002) Surface oxidation effects on the optical properties of silicon nanocrystals. Phys Rev B 65:121302CrossRef Vasiliev I, Chelikowsky JR, Martin RM (2002) Surface oxidation effects on the optical properties of silicon nanocrystals. Phys Rev B 65:121302CrossRef
Zurück zum Zitat Wang X, Zhang RQ, Niehaus TA, Frauenheim T, Lee ST (2007) Hydrogenated silicon nanoparticles relaxed in excited states. J Phys Chem C 111:12588–12593CrossRef Wang X, Zhang RQ, Niehaus TA, Frauenheim T, Lee ST (2007) Hydrogenated silicon nanoparticles relaxed in excited states. J Phys Chem C 111:12588–12593CrossRef
Zurück zum Zitat Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554CrossRef Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554CrossRef
Zurück zum Zitat Wilcoxon JP, Samara GA, Provencio PN (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60:2704CrossRef Wilcoxon JP, Samara GA, Provencio PN (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B 60:2704CrossRef
Zurück zum Zitat Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002) Quantum monte carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Phys Rev Lett 89:196803CrossRef Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002) Quantum monte carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Phys Rev Lett 89:196803CrossRef
Zurück zum Zitat Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262:1242–1244CrossRef Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262:1242–1244CrossRef
Zurück zum Zitat Zdetsis AD (2006) Optical and electronic properties of small size semiconductor nanocrystals and nanoclusters. Rev Adv Mater Sci 11:56–78 Zdetsis AD (2006) Optical and electronic properties of small size semiconductor nanocrystals and nanoclusters. Rev Adv Mater Sci 11:56–78
Zurück zum Zitat Zhang DB, Dumitrica T (2009) Modulating the optical and electronic properties of highly symmetric Si quantum dots. Nanotechnology 20:445401CrossRef Zhang DB, Dumitrica T (2009) Modulating the optical and electronic properties of highly symmetric Si quantum dots. Nanotechnology 20:445401CrossRef
Zurück zum Zitat Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167CrossRef Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167CrossRef
Metadaten
Titel
Tuning the electronic and optical properties of hydrogen-terminated Si nanocluster by uniaxial compression
verfasst von
Xue Jiang
Jijun Zhao
Xin Jiang
Publikationsdatum
01.03.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 4/2012
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-0818-4

Weitere Artikel der Ausgabe 4/2012

Journal of Nanoparticle Research 4/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.