Skip to main content
Erschienen in: Fluid Dynamics 3/2023

01.06.2023

Turbulent Heat Exchange on the Surface of a Sharp Plate at a Supersonic Flow

verfasst von: S. T. Surzhikov

Erschienen in: Fluid Dynamics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of calculations of the convective heating of a sharp plate placed in a supersonic flow at a speed of M = 6–8 are presented. The NERAT-2D code is used for calculations, which implements the Reynolds-averaged Navier−Stokes equations, together with Baldwin–Lomax and Prandtl algebraic models of turbulence. Good agreement is shown with the experimental data for convective heating in a turbulent boundary layer. The distribution of gas-dynamic functions is analyzed in different cross sections of the plate within the flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chernyi, G.G., Gazovaya dinamika (Gas Dynamics), Moscow: Nauka, 1988. Chernyi, G.G., Gazovaya dinamika (Gas Dynamics), Moscow: Nauka, 1988.
2.
Zurück zum Zitat Agafonov, V.P., Vertushkin, V.K., Gladkov, A.A., and Polyakov, O.Yu., Neravnovesnye fiziko-khimicheskie processy v aerodinamike (Non-Equilibrium Physical-Chemical Processes in Aerodynamics), Moscow: Mashinostroenie, 1972, p. 226. Agafonov, V.P., Vertushkin, V.K., Gladkov, A.A., and Polyakov, O.Yu., Neravnovesnye fiziko-khimicheskie processy v aerodinamike (Non-Equilibrium Physical-Chemical Processes in Aerodynamics), Moscow: Mashinostroenie, 1972, p. 226.
3.
Zurück zum Zitat Zemlyanskii, B.A., Lunev, V.V., and Vlasov, V.I., Konvektivnyi teploobmen letatel’nykh apparatov (Convective Heat Transfer of Aircrafts), Moscow: Fizmatlit, 2014. Zemlyanskii, B.A., Lunev, V.V., and Vlasov, V.I., Konvektivnyi teploobmen letatel’nykh apparatov (Convective Heat Transfer of Aircrafts), Moscow: Fizmatlit, 2014.
4.
Zurück zum Zitat Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fluid Dynamics), Moscow: Drofa, 2003. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fluid Dynamics), Moscow: Drofa, 2003.
6.
Zurück zum Zitat Ginzburg, I.P., Teoriya soprotivleniya i teploperedachi (Theory of Resistance and Heat Transfer), Leningrad: Leningrad State Univ., 1979. Ginzburg, I.P., Teoriya soprotivleniya i teploperedachi (Theory of Resistance and Heat Transfer), Leningrad: Leningrad State Univ., 1979.
8.
Zurück zum Zitat Nikitin, N.V. and Pimanov, V.O., Sustainment of oscillations in localized turbulent structures in pipes, Fluid Dyn., 2018, vol. 53, no.1, pp. 65–73.MathSciNetCrossRefMATHADS Nikitin, N.V. and Pimanov, V.O., Sustainment of oscillations in localized turbulent structures in pipes, Fluid Dyn., 2018, vol. 53, no.1, pp. 65–73.MathSciNetCrossRefMATHADS
9.
Zurück zum Zitat Dilley, A.D., Evaluation of CFD Turbulent Prediction Techniques and Comparison with Hypersonic Experimental Data, NASA Technical Report NASA/CR-2001-210837, 2001. Dilley, A.D., Evaluation of CFD Turbulent Prediction Techniques and Comparison with Hypersonic Experimental Data, NASA Technical Report NASA/CR-2001-210837, 2001.
10.
Zurück zum Zitat Bertram, M.H., Cary, A.M., Jr., and Whitehead, A.H., Jr., Experiments with hypersonic turbulent boundary layers on flat plate and delta wings, Proc. AGARD Specialists’ Meeting on Hypersonic Boundary Layers and Flow Fields, London, 1968. Bertram, M.H., Cary, A.M., Jr., and Whitehead, A.H., Jr., Experiments with hypersonic turbulent boundary layers on flat plate and delta wings, Proc. AGARD Specialists’ Meeting on Hypersonic Boundary Layers and Flow Fields, London, 1968.
11.
Zurück zum Zitat Bertram, M.H. and Neal, L., Jr., Recent experiments in hypersonic turbulent boundary layer, Proc. AGARD Specialists’ Meeting on Recent Developments in Boundary Layer Research, Naples, 1965. Bertram, M.H. and Neal, L., Jr., Recent experiments in hypersonic turbulent boundary layer, Proc. AGARD Specialists’ Meeting on Recent Developments in Boundary Layer Research, Naples, 1965.
12.
Zurück zum Zitat Wallace, J.E., Hypersonic turbulent boundary layer studies at cold wall conditions, in Proc. 1967 Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press, 1967, pp. 427–451. Wallace, J.E., Hypersonic turbulent boundary layer studies at cold wall conditions, in Proc. 1967 Heat Transfer and Fluid Mechanics Institute, Stanford Univ. Press, 1967, pp. 427–451.
13.
Zurück zum Zitat Walters, R.W., Reu, T., McGrory, W.D., and Hicks, J.W., A longitudinally patched approach with application to high-speed flows, Proc. AIAA 26th Aerospace Sciences Meeting, Reno, NV, 1988, AIAA Paper 88-0715. Walters, R.W., Reu, T., McGrory, W.D., and Hicks, J.W., A longitudinally patched approach with application to high-speed flows, Proc. AIAA 26th Aerospace Sciences Meeting, Reno, NV, 1988, AIAA Paper 88-0715.
14.
Zurück zum Zitat Baldwin, B.S. and Lomax, H., Thin layer approximation and algebraic model for separated turbulent flows, Proc. AIAA 16th Aerospace Sciences Meeting, Huntsville, AL, 1978, AIAA Paper 78-0257. Baldwin, B.S. and Lomax, H., Thin layer approximation and algebraic model for separated turbulent flows, Proc. AIAA 16th Aerospace Sciences Meeting, Huntsville, AL, 1978, AIAA Paper 78-0257.
15.
Zurück zum Zitat Surzhikov, S.T., Convective heating of small-radius spherical blunting for relatively low hypersonic velocities, High Temp., 2013, vol. 51, no. 2, pp. 231–245.CrossRef Surzhikov, S.T., Convective heating of small-radius spherical blunting for relatively low hypersonic velocities, High Temp., 2013, vol. 51, no. 2, pp. 231–245.CrossRef
16.
Zurück zum Zitat Surzhikov, S.T., Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov. Dvukhmernye modeli (Computational Models of Reentry Space Crafts. Two-Dimensional Models), Moscow: Fizmatlit, 2018. Surzhikov, S.T., Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov. Dvukhmernye modeli (Computational Models of Reentry Space Crafts. Two-Dimensional Models), Moscow: Fizmatlit, 2018.
17.
Zurück zum Zitat Hayes, W. and Probstein, R., Hypersonic Flow Theory, New York: Academic, 1959, pp. 333–374.MATH Hayes, W. and Probstein, R., Hypersonic Flow Theory, New York: Academic, 1959, pp. 333–374.MATH
18.
Zurück zum Zitat Avduevskii, V.S., Galitseiskii, B.M., and Glebov, G.A., Osnovy teploperedachi v aviatsionnoi i raketnokosmicheskoi tekhnike (The Basics of Heat Transfer for Aviation and Rocket and Space Technology), Moscow: Mashinostroenie, 1975. Avduevskii, V.S., Galitseiskii, B.M., and Glebov, G.A., Osnovy teploperedachi v aviatsionnoi i raketnokosmicheskoi tekhnike (The Basics of Heat Transfer for Aviation and Rocket and Space Technology), Moscow: Mashinostroenie, 1975.
19.
Zurück zum Zitat Isaev, S.I., Kozhinov, I.A., and Koranov, V.I., Teoriya teplomassoobmena (Heat Transfer Theory), Moscow: Vysshaya Shkola, 1979. Isaev, S.I., Kozhinov, I.A., and Koranov, V.I., Teoriya teplomassoobmena (Heat Transfer Theory), Moscow: Vysshaya Shkola, 1979.
20.
Zurück zum Zitat Bolgarskii, A.V., Mukhachev, G.A., and Shchukin, V.K., Termodinamika i teploperedacha (Thermodynamics and Heat Transfer), Moscow: Vysshaya Shkola, 1975. Bolgarskii, A.V., Mukhachev, G.A., and Shchukin, V.K., Termodinamika i teploperedacha (Thermodynamics and Heat Transfer), Moscow: Vysshaya Shkola, 1975.
21.
Zurück zum Zitat Tannehill, J.C., Anderson, D.A., and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, Taylor, 1997.MATH Tannehill, J.C., Anderson, D.A., and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, Taylor, 1997.MATH
22.
Zurück zum Zitat Date, A.W., Introduction to Computational Fluid Dynamics, Cambridge Univ. Press, 2005.CrossRef Date, A.W., Introduction to Computational Fluid Dynamics, Cambridge Univ. Press, 2005.CrossRef
23.
Zurück zum Zitat Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Connective Heat Transfer, Springer, 2012.MATH Cebeci, T. and Bradshaw, P., Physical and Computational Aspects of Connective Heat Transfer, Springer, 2012.MATH
24.
Zurück zum Zitat Horstman, C.C., Prediction of hypersonic shock-wave/turbulent-boundary-layer interaction flows, Proc. AIAA 25th Aerospace Sciences Meeting, Reno, NV, 1987, AIAA Paper 87-1367. Horstman, C.C., Prediction of hypersonic shock-wave/turbulent-boundary-layer interaction flows, Proc. AIAA 25th Aerospace Sciences Meeting, Reno, NV, 1987, AIAA Paper 87-1367.
25.
Zurück zum Zitat Shirazi, S.A. and Truman, C.R., Comparison of algebraic turbulence model for PNS predictions of supersonic flow past a sphere-cone, Proc. AIAA 25th Aerospace Sciences Meeting, Reno, NV, 1987, AIAA Paper 87-0544. Shirazi, S.A. and Truman, C.R., Comparison of algebraic turbulence model for PNS predictions of supersonic flow past a sphere-cone, Proc. AIAA 25th Aerospace Sciences Meeting, Reno, NV, 1987, AIAA Paper 87-0544.
26.
Zurück zum Zitat Shang, J.S. and Scherr, S.J., Navier–Stockes solution for a complete re-entry configuration, J. Aircr., 1986, vol. 23, no. 12, pp. 881–888.CrossRef Shang, J.S. and Scherr, S.J., Navier–Stockes solution for a complete re-entry configuration, J. Aircr., 1986, vol. 23, no. 12, pp. 881–888.CrossRef
27.
Zurück zum Zitat Cheatwood, F.M. and Thompson, R.A., The addition of algebraic turbulence modelling to program LAURA, NASA Technical Memorandum NASA TM 107758, 1993. Cheatwood, F.M. and Thompson, R.A., The addition of algebraic turbulence modelling to program LAURA, NASA Technical Memorandum NASA TM 107758, 1993.
28.
Zurück zum Zitat Visbal, M. and Knight, D., The Baldwin–Lomax turbulence model for two-dimensional shock-wave/boundary-layer interaction, AIAA J., 1984, vol. 22, no. 7, pp. 921–928.CrossRefMATHADS Visbal, M. and Knight, D., The Baldwin–Lomax turbulence model for two-dimensional shock-wave/boundary-layer interaction, AIAA J., 1984, vol. 22, no. 7, pp. 921–928.CrossRefMATHADS
29.
Zurück zum Zitat Surzhikov, S.T., Radiative-convective heating of Martian space vehicle MSL EDL at angle of attack, Phys.-Chem. Kinet. Gas Dyn., 2015, vol. 16, no. 2. http://chemphys.edu.ru/issues/2015-16-2/articles/604/. Surzhikov, S.T., Radiative-convective heating of Martian space vehicle MSL EDL at angle of attack, Phys.-Chem. Kinet. Gas Dyn., 2015, vol. 16, no. 2. http://​chemphys.​edu.​ru/​issues/​2015-16-2/​articles/​604/​.​
30.
Zurück zum Zitat Surzhikov, S.T., Analysis of the experimental data on the convective heating of a model Martian entry vehicle using algebraic turbulence models, Fluid Dyn., 2019, vol. 54, no. 6, pp. 863–874.MathSciNetCrossRefMATHADS Surzhikov, S.T., Analysis of the experimental data on the convective heating of a model Martian entry vehicle using algebraic turbulence models, Fluid Dyn., 2019, vol. 54, no. 6, pp. 863–874.MathSciNetCrossRefMATHADS
Metadaten
Titel
Turbulent Heat Exchange on the Surface of a Sharp Plate at a Supersonic Flow
verfasst von
S. T. Surzhikov
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 3/2023
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462823600141

Weitere Artikel der Ausgabe 3/2023

Fluid Dynamics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.