Skip to main content
Erschienen in: Fluid Dynamics 6/2023

01.12.2023

Turbulent Schmidt and Prandtl Numbers in the Boundary Layer on a Wall with Film Cooling when a Foreign Gas is Injected through a Porous Insert

verfasst von: V. G. Lushchik, M. S. Makarova, S. S. Popovich

Erschienen in: Fluid Dynamics | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Variations in the turbulent Schmidt and Prandtl numbers in the boundary layer on a wall with film cooling when helium is injected into xenon flow through a porous insert is investigated numerically using the three-parameter RANS turbulence model supplemented with transport equations for turbulent heat and mass transfer. The results obtained are compared with calculated data for constant turbulent Schmidt and Prandtl numbers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kays, W.M., Turbulent Prandtl number—where are we?, Trans. ASME. J. Heat Transf., 1994, vol. 116, pp. 284–295.ADSCrossRef Kays, W.M., Turbulent Prandtl number—where are we?, Trans. ASME. J. Heat Transf., 1994, vol. 116, pp. 284–295.ADSCrossRef
2.
Zurück zum Zitat McEligot, D.M. and Taylor, M.F., The turbulent Prandtl number in the near–wall region for low–Prandtl–number gas mixture, Int. J. Heat Mass Transf., 1996, vol. 39, pp. 1287–1295.CrossRef McEligot, D.M. and Taylor, M.F., The turbulent Prandtl number in the near–wall region for low–Prandtl–number gas mixture, Int. J. Heat Mass Transf., 1996, vol. 39, pp. 1287–1295.CrossRef
3.
Zurück zum Zitat Redjem-Saad, L., Ould-Rouiss, M., and Lauriat, G., Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 5, pp. 847–861.CrossRef Redjem-Saad, L., Ould-Rouiss, M., and Lauriat, G., Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number, Int. J. Heat Fluid Flow, 2007, vol. 28, no. 5, pp. 847–861.CrossRef
4.
Zurück zum Zitat Kawamura, H., Ohsaka, K., Abe, H., and Yamamoto, K., DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid, Int. J. Heat Fluid Flow, 1998, vol. 19, no. 5, pp. 482–491.CrossRef Kawamura, H., Ohsaka, K., Abe, H., and Yamamoto, K., DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid, Int. J. Heat Fluid Flow, 1998, vol. 19, no. 5, pp. 482–491.CrossRef
5.
Zurück zum Zitat Kawamura, H., Abe, H., and Matsuo, Y., DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 3, pp. 196–207.CrossRef Kawamura, H., Abe, H., and Matsuo, Y., DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 3, pp. 196–207.CrossRef
6.
Zurück zum Zitat Christopher, N., Peter, J.M.F., Kloker, M.J, and Hickey, J.P., DNS of turbulent flat-plate flow with transpiration cooling, Int. J. Heat Mass Transf., 2020, vol. 157, p. 119972. Christopher, N., Peter, J.M.F., Kloker, M.J, and Hickey, J.P., DNS of turbulent flat-plate flow with transpiration cooling, Int. J. Heat Mass Transf., 2020, vol. 157, p. 119972.
7.
Zurück zum Zitat Moffat, R.J. and Kays, W.M., A review of turbulent–boundary–layer heat transfer Research at Stanford, 1958–1983, Adv. Heat Transf., 1984, vol. 16, pp. 241–365.CrossRef Moffat, R.J. and Kays, W.M., A review of turbulent–boundary–layer heat transfer Research at Stanford, 1958–1983, Adv. Heat Transf., 1984, vol. 16, pp. 241–365.CrossRef
8.
Zurück zum Zitat Kader, B.A. and Yaglom, A.M., Heat and mass transfer laws for fully turbulent wall flows, Int. J. Heat Mass Transf., 1972, vol. 15, pp. 2329–2351.CrossRef Kader, B.A. and Yaglom, A.M., Heat and mass transfer laws for fully turbulent wall flows, Int. J. Heat Mass Transf., 1972, vol. 15, pp. 2329–2351.CrossRef
9.
Zurück zum Zitat Lushchik V.G. and Makarova, M.S., Turbulent Prandtl number in the plate boundary layer: effect of the molecular Prandtl number, blowing (suction), and longitudinal pressure gradient, Teplofiz. Aeromekh., 2018, vol. 25, no. 2, pp. 177–190. Lushchik V.G. and Makarova, M.S., Turbulent Prandtl number in the plate boundary layer: effect of the molecular Prandtl number, blowing (suction), and longitudinal pressure gradient, Teplofiz. Aeromekh., 2018, vol. 25, no. 2, pp. 177–190.
10.
Zurück zum Zitat Leontiev, A.I., Lushchik, V.G., and Makarova, M.S., Study of effect of molecular Prandtl number, transpiration, and longitudinal pressure gradient on flow and heat transfer characteristics in boundary layers, Comput. Therm. Sci., 2019, vol. 11, pp. 41–49.CrossRef Leontiev, A.I., Lushchik, V.G., and Makarova, M.S., Study of effect of molecular Prandtl number, transpiration, and longitudinal pressure gradient on flow and heat transfer characteristics in boundary layers, Comput. Therm. Sci., 2019, vol. 11, pp. 41–49.CrossRef
16.
17.
Zurück zum Zitat Peter, J.M.F. and Kloker, M.J., Direct numerical simulation of supersonic turbulent flow with film cooling by wall-parallel blowing, Phys. Fluids, 2022, vol. 34, p. 025125. Peter, J.M.F. and Kloker, M.J., Direct numerical simulation of supersonic turbulent flow with film cooling by wall-parallel blowing, Phys. Fluids, 2022, vol. 34, p. 025125.
18.
Zurück zum Zitat He, G., Guo, Ya., and Hsu, A.T., The effect of Schmidt number on turbulent scalar mixing in a jet-in-crossflow, Int. J. Heat Mass Transf., 1999, vol. 42, pp. 3727–3738.CrossRef He, G., Guo, Ya., and Hsu, A.T., The effect of Schmidt number on turbulent scalar mixing in a jet-in-crossflow, Int. J. Heat Mass Transf., 1999, vol. 42, pp. 3727–3738.CrossRef
19.
Zurück zum Zitat Tominaga, Yo and Stathopoulos, T., Turbulent Schmidt numbers for CFD analysis with various types of flow field, Atmos. Environ., 2007, vol. 41, pp. 8091–8099. Tominaga, Yo and Stathopoulos, T., Turbulent Schmidt numbers for CFD analysis with various types of flow field, Atmos. Environ., 2007, vol. 41, pp. 8091–8099.
20.
Zurück zum Zitat Ievlev, V.M., Turbulentnoe dvizhenie vysokotemperaturnykh sploshnykh sred (Turbulent Motion of High-Temperature Continuous Media), Moscow: Nauka, 1975. Ievlev, V.M., Turbulentnoe dvizhenie vysokotemperaturnykh sploshnykh sred (Turbulent Motion of High-Temperature Continuous Media), Moscow: Nauka, 1975.
21.
Zurück zum Zitat Kays, W.M., Convective Heat and Mass Transfer, 4th ed., McGraw-Hill, 2004. Kays, W.M., Convective Heat and Mass Transfer, 4th ed., McGraw-Hill, 2004.
22.
Zurück zum Zitat Kader, B.A. and Yaglom, A.M., Similarity laws for turbulent boundary flows, in: Progress in Science and Engineering. Fluid Mechanics Series, Vol. 15, All-Union Institute of Scientific and Technical Information, USSR Academy of Sciences, Moscow, 1980, pp. 81–155. Kader, B.A. and Yaglom, A.M., Similarity laws for turbulent boundary flows, in: Progress in Science and Engineering. Fluid Mechanics Series, Vol. 15, All-Union Institute of Scientific and Technical Information, USSR Academy of Sciences, Moscow, 1980, pp. 81–155.
23.
Zurück zum Zitat Sherwood, T.K., Pigford, R.L., and Wilke, R.L., Mass Transfer, New York: McGraw-Hill, 1975. Sherwood, T.K., Pigford, R.L., and Wilke, R.L., Mass Transfer, New York: McGraw-Hill, 1975.
24.
Zurück zum Zitat Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.
25.
Zurück zum Zitat Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1968. Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1968.
26.
Zurück zum Zitat Kutateladze, S.S. and Leont’ev, A.I., Teplomassoobmen i trenie v turbulentnom pogranichnom sloe (Heat and Mass Transfer and Friction in the Turbulent Boundary Layer), Moscow: Energoatomizdat, 1985. Kutateladze, S.S. and Leont’ev, A.I., Teplomassoobmen i trenie v turbulentnom pogranichnom sloe (Heat and Mass Transfer and Friction in the Turbulent Boundary Layer), Moscow: Energoatomizdat, 1985.
Metadaten
Titel
Turbulent Schmidt and Prandtl Numbers in the Boundary Layer on a Wall with Film Cooling when a Foreign Gas is Injected through a Porous Insert
verfasst von
V. G. Lushchik
M. S. Makarova
S. S. Popovich
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 6/2023
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462823600955

Weitere Artikel der Ausgabe 6/2023

Fluid Dynamics 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.