Skip to main content

2018 | OriginalPaper | Buchkapitel

Two-Scale Concurrent Topology Optimization with Multiple Micro Materials Based on Principal Stress Direction

verfasst von : Liang Xu, Gengdong Cheng

Erschienen in: Advances in Structural and Multidisciplinary Optimization

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies two-scale concurrent topology optimization with multiple micro heterogeneous materials subject to volume constraints. Unlike the existing work on concurrent two-scale optimization where only one material with optimal microstructure is used or that with multiple micro material where each material is distributed in a number of prescribed geometrical domains, selection of micro heterogeneous materials in this work is based on direction of principal stresses in macro structure. For a structure composed of m micro materials, the macro elements are classified into m categories according to their principal stress direction and each category is assigned with a uniform micro material. The interpolation scheme for macro elements is based on Discrete Material Optimization (DMO), where each element is assigned with m macro design variables. The categorization process of the macro structure is achieved by proper modification of volume constraints, where the macro design variables are multiplied by penalty functions. The penalty functions make it uneconomical for the usage of micro materials, which do not correspond to the principal stress direction of their macro element. The macro structure and micro material are connected through effective property, which is calculated through novel numerical implementation of asymptotic homogenization method (NIAH). Both macro structure and micro materials are optimized concurrently and analytical sensitivities are calculated with adjoint method. One minimum compliance numerical example of an L-bracket subject to volume constraints, where one micro material correspond to macro domain with principal stress angle near 0 or 90 degrees and another correspond to that with principal stress angle near 45 or 135 degrees, is presented to show the potential of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329 (1994)MathSciNetCrossRefMATH Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329 (1994)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Guest, J.K., Prévost, J.H.: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43(22), 7028–7047 (2006)CrossRefMATH Guest, J.K., Prévost, J.H.: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43(22), 7028–7047 (2006)CrossRefMATH
3.
Zurück zum Zitat Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)MathSciNetCrossRefMATH Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993)CrossRef Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993)CrossRef
5.
Zurück zum Zitat Rodrigues, H., Guedes, J.M., Bendsoe, M.P.: Hierarchical optimization of material and structure. Struct. Multi. Optim. 24(1), 1–10 (2002)CrossRef Rodrigues, H., Guedes, J.M., Bendsoe, M.P.: Hierarchical optimization of material and structure. Struct. Multi. Optim. 24(1), 1–10 (2002)CrossRef
6.
Zurück zum Zitat Coelho, P.G., Fernandes, P.R., Guedes, J.M., et al.: A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multi. Optim. 35(2), 107–115 (2008)CrossRef Coelho, P.G., Fernandes, P.R., Guedes, J.M., et al.: A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multi. Optim. 35(2), 107–115 (2008)CrossRef
7.
Zurück zum Zitat Guedes, J.M., Lubrano, E., Rodrigues, H.C., et al.: Hierarchical optimization of material and structure for thermal transient problems. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. IUTAM, Rungstedgaard, Denmark (2006). (ISBN: 978-140204729-9) Guedes, J.M., Lubrano, E., Rodrigues, H.C., et al.: Hierarchical optimization of material and structure for thermal transient problems. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. IUTAM, Rungstedgaard, Denmark (2006). (ISBN: 978-140204729-9)
8.
Zurück zum Zitat Liu, L., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86(13), 1417–1425 (2008)CrossRef Liu, L., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86(13), 1417–1425 (2008)CrossRef
9.
Zurück zum Zitat Yan, J., Cheng, G., Liu, L.: A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int. J. Simul. Multi. Design Optim. 2(4), 259–266 (2008)CrossRef Yan, J., Cheng, G., Liu, L.: A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int. J. Simul. Multi. Design Optim. 2(4), 259–266 (2008)CrossRef
10.
Zurück zum Zitat Niu, B., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multi. Optim. 39(2), 115 (2009)CrossRef Niu, B., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multi. Optim. 39(2), 115 (2009)CrossRef
11.
Zurück zum Zitat Deng, J., Yan, J., Cheng, G.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multi. Optim. 47(4), 583–597 (2013)MathSciNetCrossRefMATH Deng, J., Yan, J., Cheng, G.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multi. Optim. 47(4), 583–597 (2013)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cheng, G., Xu, L.: Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint. Struct. Multi. Optim. 54(5), 1283–1296 (2016)MathSciNetCrossRef Cheng, G., Xu, L.: Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint. Struct. Multi. Optim. 54(5), 1283–1296 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Sivapuram, R., Dunning, P.D., Kim, H.A.: Simultaneous material and structural optimization by multiscale topology optimization. Struct. Multi. Optim. 54(5), 1267–1281 (2016)MathSciNetCrossRef Sivapuram, R., Dunning, P.D., Kim, H.A.: Simultaneous material and structural optimization by multiscale topology optimization. Struct. Multi. Optim. 54(5), 1267–1281 (2016)MathSciNetCrossRef
14.
Zurück zum Zitat Xu, B., Jiang, J.S., Xie, Y.M.: Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance. Compos. Struct. 128, 221–233 (2015)CrossRef Xu, B., Jiang, J.S., Xie, Y.M.: Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance. Compos. Struct. 128, 221–233 (2015)CrossRef
15.
Zurück zum Zitat Xu, B., Huang, X., Zhou, S.W., et al.: Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness. Compos. Struct. 150, 84–102 (2016)CrossRef Xu, B., Huang, X., Zhou, S.W., et al.: Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness. Compos. Struct. 150, 84–102 (2016)CrossRef
16.
Zurück zum Zitat Xu, S.L., Niu, B., Cheng, G.D.: Crystal nucleus method for material design. Acta Mech. Solida Sin. 31(4), 369–378 (2010) Xu, S.L., Niu, B., Cheng, G.D.: Crystal nucleus method for material design. Acta Mech. Solida Sin. 31(4), 369–378 (2010)
17.
Zurück zum Zitat Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Meth. Eng. 62(14), 2009–2027 (2005)CrossRefMATH Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Meth. Eng. 62(14), 2009–2027 (2005)CrossRefMATH
18.
Zurück zum Zitat Cheng, G.D., Cai, Y.W., Xu, L.: Novel implementation of homogenization method to predict effective properties of periodic materials. Acta. Mech. Sin. 29(4), 550–556 (2013)MathSciNetCrossRefMATH Cheng, G.D., Cai, Y.W., Xu, L.: Novel implementation of homogenization method to predict effective properties of periodic materials. Acta. Mech. Sin. 29(4), 550–556 (2013)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)MATH Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)MATH
20.
Zurück zum Zitat Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26), 3443–3459 (2001)CrossRefMATH Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26), 3443–3459 (2001)CrossRefMATH
22.
Zurück zum Zitat Guest, J.K., Prévost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Meth. Eng. 61(2), 238–254 (2004)MathSciNetCrossRefMATH Guest, J.K., Prévost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Meth. Eng. 61(2), 238–254 (2004)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)MathSciNetCrossRefMATH Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)MathSciNetCrossRefMATH
Metadaten
Titel
Two-Scale Concurrent Topology Optimization with Multiple Micro Materials Based on Principal Stress Direction
verfasst von
Liang Xu
Gengdong Cheng
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67988-4_130

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.