Skip to main content

2018 | OriginalPaper | Buchkapitel

Topology Optimization of Viscoelastic Materials for Maximizing Damping and Natural Frequency of Macrostructures

verfasst von : Qiming Liu, Xiaodong Huang

Erschienen in: Advances in Structural and Multidisciplinary Optimization

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The topology optimization algorithm of viscoelastic material microstructure based on bi-directional evolutionary structural optimization (BESO) method is proposed for macroscopic damping characteristics of the structures. The optimization aims to obtain the optimal topologies of the material microstructures within given volume fraction so that the resulting structure has optimal damping characteristics. The design concept of this scheme is essentially a two-scale design which considers the effective properties of material microstructures and macroscopic performance. Viscoelastic material is used for the damping of the macrostructure and the frequency constraint is also applied so that the resulting macrostructure has the best damping performance with prescribed natural frequencies. The microstructures of the material are represented by periodic unit cells (PUCs) and the effective properties of the material microstructures are homogenized and integrated into the finite element analysis of the macroscopic structures. The sensitivity analysis is conducted for iteratively updating the topologies of material microstructures. Numerical examples are presented to demonstrate the effectiveness of the proposed optimization algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Christensen, R.: Theory of Viscoelasticity: An Introduction. Elsevier (2012) Christensen, R.: Theory of Viscoelasticity: An Introduction. Elsevier (2012)
2.
Zurück zum Zitat Kerwin Jr., E.M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31, 952–962 (1959)CrossRef Kerwin Jr., E.M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31, 952–962 (1959)CrossRef
3.
Zurück zum Zitat Shen, I.: Hybrid damping through intelligent constrained layer treatments. J. Vib. Acoust. 116, 341–349 (1994)CrossRef Shen, I.: Hybrid damping through intelligent constrained layer treatments. J. Vib. Acoust. 116, 341–349 (1994)CrossRef
4.
Zurück zum Zitat Nashif, A.D., Jones, D.I., Henderson, J.P.: Vibration Damping. Wiley (1985) Nashif, A.D., Jones, D.I., Henderson, J.P.: Vibration Damping. Wiley (1985)
5.
Zurück zum Zitat Araújo, A.L., Mota Soares, C.M., Mota Soares, C.A.: A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures. Appl. Compos. Mater. 17, 529–542 (2010)CrossRef Araújo, A.L., Mota Soares, C.M., Mota Soares, C.A.: A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures. Appl. Compos. Mater. 17, 529–542 (2010)CrossRef
6.
Zurück zum Zitat Lifshitz, J., Leibowitz, M.: Optimal sandwich beam design for maximum viscoelastic damping. Int. J. Solids Struct. 23, 1027–1034 (1987)CrossRefMATH Lifshitz, J., Leibowitz, M.: Optimal sandwich beam design for maximum viscoelastic damping. Int. J. Solids Struct. 23, 1027–1034 (1987)CrossRefMATH
7.
Zurück zum Zitat Baz, A., Ro, J.: Optimum design and control of active constrained layer damping. J. Mech. Des. 117, 135–144 (1995)CrossRef Baz, A., Ro, J.: Optimum design and control of active constrained layer damping. J. Mech. Des. 117, 135–144 (1995)CrossRef
8.
Zurück zum Zitat Plunkett, R., Lee, C.: Length optimization for constrained viscoelastic layer damping. J. Acoust. Soc. Am. 48, 150–161 (1970)CrossRef Plunkett, R., Lee, C.: Length optimization for constrained viscoelastic layer damping. J. Acoust. Soc. Am. 48, 150–161 (1970)CrossRef
9.
Zurück zum Zitat Alam, N., Asnani, N.: Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers. J. Sound Vib. 97, 597–614 (1984)CrossRef Alam, N., Asnani, N.: Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers. J. Sound Vib. 97, 597–614 (1984)CrossRef
10.
Zurück zum Zitat Lall, A., Nakra, B., Asnani, N.: Optimum design of viscoelastically damped sandwich panels. Eng. Optim. 6, 197–205 (1983)CrossRef Lall, A., Nakra, B., Asnani, N.: Optimum design of viscoelastically damped sandwich panels. Eng. Optim. 6, 197–205 (1983)CrossRef
11.
Zurück zum Zitat Zheng, H., Cai, C., Tan, X.: Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Comput. Struct. 82, 2493–2507 (2004)CrossRef Zheng, H., Cai, C., Tan, X.: Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Comput. Struct. 82, 2493–2507 (2004)CrossRef
12.
Zurück zum Zitat Zheng, H., Cai, C., Pau, G., Liu, G.: Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J. Sound Vib. 279, 739–756 (2005)CrossRef Zheng, H., Cai, C., Pau, G., Liu, G.: Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J. Sound Vib. 279, 739–756 (2005)CrossRef
13.
Zurück zum Zitat Yamamoto, T., Yamada, T., Izui, K., Nishiwaki, S.: Optimal design of unconstrained damping material on a thin panel by using topology optimization. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering Melbourne (Australia) (2014) Yamamoto, T., Yamada, T., Izui, K., Nishiwaki, S.: Optimal design of unconstrained damping material on a thin panel by using topology optimization. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering Melbourne (Australia) (2014)
14.
Zurück zum Zitat El-Sabbagh, A., Baz, A.: Topology optimization of unconstrained damping treatments for plates. Eng. Optim. 46, 1153–1168 (2014)MathSciNetCrossRef El-Sabbagh, A., Baz, A.: Topology optimization of unconstrained damping treatments for plates. Eng. Optim. 46, 1153–1168 (2014)MathSciNetCrossRef
15.
Zurück zum Zitat James, K.A., Waisman, H.: Topology optimization of viscoelastic structures using a time-dependent adjoint method. Comput. Methods Appl. Mech. Eng. 285, 166–187 (2015)MathSciNetCrossRef James, K.A., Waisman, H.: Topology optimization of viscoelastic structures using a time-dependent adjoint method. Comput. Methods Appl. Mech. Eng. 285, 166–187 (2015)MathSciNetCrossRef
16.
Zurück zum Zitat Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)CrossRef Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)CrossRef
18.
Zurück zum Zitat Zhou, M., Rozvany, G.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)CrossRef Zhou, M., Rozvany, G.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)CrossRef
19.
Zurück zum Zitat Bensφe, M., Sigmund, O.: Topology Optimization Theory, Method and Applications. Springer, Heidelberg (2003) Bensφe, M., Sigmund, O.: Topology Optimization Theory, Method and Applications. Springer, Heidelberg (2003)
20.
Zurück zum Zitat Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)CrossRef Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)CrossRef
21.
Zurück zum Zitat Xie, Y.M., Steven, G.P.: Basic Evolutionary Structural Optimization. Springer (1997) Xie, Y.M., Steven, G.P.: Basic Evolutionary Structural Optimization. Springer (1997)
22.
Zurück zum Zitat Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley (2010) Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley (2010)
23.
Zurück zum Zitat Huang, X., Xie, Y.M.: A further review of ESO type methods for topology optimization. Struct. Multi. Optim. 41, 671–683 (2010)CrossRef Huang, X., Xie, Y.M.: A further review of ESO type methods for topology optimization. Struct. Multi. Optim. 41, 671–683 (2010)CrossRef
24.
Zurück zum Zitat Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)MathSciNetCrossRefMATH Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)MathSciNetCrossRefMATH Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Sigmund, O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)CrossRef Sigmund, O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)CrossRef
27.
Zurück zum Zitat Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)CrossRef Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)CrossRef
28.
Zurück zum Zitat Yi, Y.-M., Park, S.-H., Youn, S.-K.: Design of microstructures of viscoelastic composites for optimal damping characteristics. Int. J. Solids Struct. 37, 4791–4810 (2000)CrossRefMATH Yi, Y.-M., Park, S.-H., Youn, S.-K.: Design of microstructures of viscoelastic composites for optimal damping characteristics. Int. J. Solids Struct. 37, 4791–4810 (2000)CrossRefMATH
29.
Zurück zum Zitat Prasad, J., Diaz, A.: Viscoelastic material design with negative stiffness components using topology optimization. Struct. Multi. Optim. 38, 583–597 (2009)CrossRef Prasad, J., Diaz, A.: Viscoelastic material design with negative stiffness components using topology optimization. Struct. Multi. Optim. 38, 583–597 (2009)CrossRef
30.
Zurück zum Zitat Chen, W., Liu, S.: Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct. Multi. Optim. 50, 287–296 (2014)MathSciNetCrossRef Chen, W., Liu, S.: Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct. Multi. Optim. 50, 287–296 (2014)MathSciNetCrossRef
31.
Zurück zum Zitat Andreasen, C.S., Andreassen, E., Jensen, J.S., Sigmund, O.: On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J. Mech. Phys. Solids 63, 228–241 (2014)MathSciNetCrossRef Andreasen, C.S., Andreassen, E., Jensen, J.S., Sigmund, O.: On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J. Mech. Phys. Solids 63, 228–241 (2014)MathSciNetCrossRef
32.
Zurück zum Zitat Andreassen, E., Jensen, J.S.: Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct. Multi. Optim. 49, 695–705 (2014)MathSciNetCrossRef Andreassen, E., Jensen, J.S.: Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct. Multi. Optim. 49, 695–705 (2014)MathSciNetCrossRef
33.
Zurück zum Zitat Huang, X., Zhou, S., Sun, G., Li, G., Xie, Y.M.: Topology optimization for microstructures of viscoelastic composite materials. Comput. Methods Appl. Mech. Eng. 283, 503–516 (2015)CrossRef Huang, X., Zhou, S., Sun, G., Li, G., Xie, Y.M.: Topology optimization for microstructures of viscoelastic composite materials. Comput. Methods Appl. Mech. Eng. 283, 503–516 (2015)CrossRef
34.
Zurück zum Zitat Chen, W., Liu, S.: Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures. Struct. Multi. Optim. 53, 1–14 (2016)MathSciNetCrossRef Chen, W., Liu, S.: Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures. Struct. Multi. Optim. 53, 1–14 (2016)MathSciNetCrossRef
35.
Zurück zum Zitat Tenek, L.H., Hagiwara, I.: Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming. JSME Int. J. Ser. C, Dyn. Control Robot. Des. Manuf. 37, 667–677 (1994) Tenek, L.H., Hagiwara, I.: Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming. JSME Int. J. Ser. C, Dyn. Control Robot. Des. Manuf. 37, 667–677 (1994)
36.
Zurück zum Zitat Ma, Z.D., Kikuchi, N., Cheng, H.-C.: Topological design for vibrating structures. Comput. Methods Appl. Mech. Eng. 121, 259–280 (1995)MathSciNetCrossRefMATH Ma, Z.D., Kikuchi, N., Cheng, H.-C.: Topological design for vibrating structures. Comput. Methods Appl. Mech. Eng. 121, 259–280 (1995)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multi. Optim. 20, 2–11 (2000)CrossRef Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multi. Optim. 20, 2–11 (2000)CrossRef
38.
Zurück zum Zitat Du, J., Olhoff, N.: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct. Multi. Optim. 34, 91–110 (2007)MathSciNetCrossRefMATH Du, J., Olhoff, N.: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct. Multi. Optim. 34, 91–110 (2007)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Xie, Y.M., Steven, G.P.: Evolutionary structural optimization for dynamic problems. Comput. Struct. 58, 1067–1073 (1996)CrossRefMATH Xie, Y.M., Steven, G.P.: Evolutionary structural optimization for dynamic problems. Comput. Struct. 58, 1067–1073 (1996)CrossRefMATH
40.
Zurück zum Zitat Zhao, C., Steven, G.P., Xie, Y.M.: Evolutionary natural frequency optimization of two-dimensional structures with additional non-structural lumped masses. Eng. Comput. 14, 233–251 (1997)CrossRefMATH Zhao, C., Steven, G.P., Xie, Y.M.: Evolutionary natural frequency optimization of two-dimensional structures with additional non-structural lumped masses. Eng. Comput. 14, 233–251 (1997)CrossRefMATH
41.
Zurück zum Zitat Yang, X., Xie, Y.M., Steven, G.P., Querin, O.: Topology optimization for frequencies using an evolutionary method. J. Struct. Eng. 125, 1432–1438 (1999)CrossRef Yang, X., Xie, Y.M., Steven, G.P., Querin, O.: Topology optimization for frequencies using an evolutionary method. J. Struct. Eng. 125, 1432–1438 (1999)CrossRef
42.
Zurück zum Zitat Huang, X., Zuo, Z., Xie, Y.M.: Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput. Struct. 88, 357–364 (2010)CrossRef Huang, X., Zuo, Z., Xie, Y.M.: Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput. Struct. 88, 357–364 (2010)CrossRef
43.
Zurück zum Zitat Cremer, L., Heckl, M.: Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer (2013) Cremer, L., Heckl, M.: Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer (2013)
44.
Zurück zum Zitat Daya, E., Potier-Ferry, M.: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput. Struct. 79, 533–541 (2001)MathSciNetCrossRef Daya, E., Potier-Ferry, M.: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput. Struct. 79, 533–541 (2001)MathSciNetCrossRef
45.
Zurück zum Zitat Duigou, L., Potier-Ferry, M.: Iterative algorithms for non-linear eigenvalue problems, Application to vibrations of viscoelastic shells. Comput. Methods Appl. Mech. Eng. 192, 1323–1335 (2003)CrossRefMATH Duigou, L., Potier-Ferry, M.: Iterative algorithms for non-linear eigenvalue problems, Application to vibrations of viscoelastic shells. Comput. Methods Appl. Mech. Eng. 192, 1323–1335 (2003)CrossRefMATH
46.
Zurück zum Zitat Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)CrossRefMATH Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)CrossRefMATH
47.
Zurück zum Zitat Huang, X., Xie, Y.M.: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech. 43, 393–401 (2009)MathSciNetCrossRefMATH Huang, X., Xie, Y.M.: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech. 43, 393–401 (2009)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Araújo, A., Martins, P., Soares, C.M., Soares, C.M., Herskovits, J.: Damping optimization of viscoelastic laminated sandwich composite structures. Struct. Multi. Optim. 39, 569–579 (2009)MathSciNetCrossRefMATH Araújo, A., Martins, P., Soares, C.M., Soares, C.M., Herskovits, J.: Damping optimization of viscoelastic laminated sandwich composite structures. Struct. Multi. Optim. 39, 569–579 (2009)MathSciNetCrossRefMATH
49.
Zurück zum Zitat Huang, X., Xie, Y.M.: Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multi. Optim. 40, 409–416 (2010)MathSciNetCrossRefMATH Huang, X., Xie, Y.M.: Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multi. Optim. 40, 409–416 (2010)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75 (1998)CrossRef Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75 (1998)CrossRef
51.
Zurück zum Zitat Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)CrossRef Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)CrossRef
Metadaten
Titel
Topology Optimization of Viscoelastic Materials for Maximizing Damping and Natural Frequency of Macrostructures
verfasst von
Qiming Liu
Xiaodong Huang
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67988-4_131

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.