Skip to main content
Erschienen in: Tribology Letters 3/2017

01.09.2017 | Original Paper

UHMWPE Hybrid Nanocomposites for Improved Tribological Performance Under Dry and Water-Lubricated Sliding Conditions

verfasst von: Annas Bin Ali, M. Abdul Samad, N. Merah

Erschienen in: Tribology Letters | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To tap the full potential of polymers to be used as tribo-materials under water lubrication, it is very important to improve their resistance to water uptake on the one hand and improve their strength and load bearing capacity on the other so that their performance under these conditions is not deteriorated. Hence, a unique approach of fabricating a hybrid polymer nanocomposite reinforced with nanoclay for improving the resistance to water uptake and carbon nanotubes (CNTs) to improve the mechanical/tribological properties is undertaken. Ultrahigh molecular weight polyethylene (UHMWPE) hybrid nanocomposites were fabricated via ball milling followed by hot pressing method. Functionalized multi-wall CNTs and C15A organoclay were used as nanofillers in UHMWPE matrix. Hybrid nanocomposites were developed with CNT loadings of 0.5, 1.5 and 3.0 wt% while keeping C15A organoclay content fixed at an optimized value of 1.5 wt%. Initially, the hybrid nanocomposites were optimized under dry sliding conditions whereby a loading of 1.5 wt% of CNTs and 1.5 wt% C15A organoclay resulted in the maximum reduction in the specific wear rate by about 64% as compared to pristine UHMWPE. Later, tribological performance of the optimized hybrid nanocomposite was compared with pristine UHMWPE and its UHMWPE nanocomposites under water-lubricated conditions sliding against a 440C stainless steel ball for 150,000 cycles. The specific wear rate showed a reduction by ~46% for the 1.5 wt% CNTs hybrid nanocomposites as compared to pristine UHMWPE under water lubrication. The improved resistance to wear was attributed to the uniform dispersion of both the nanofillers, namely CNTs and C15A organoclay which effectively increased the load bearing capacity of UHMWPE. Moreover, the excellent barrier properties of the platelet-like structure of C15A clay which presented a torturous path for the diffusion of the water molecule in UHMWPE reduced the softening of the surface layer leading to better resistance to wear under water lubrication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sasaki, S.: Environmentally friendly tribology (Eco-tribology). J. Mech. Sci. Technol. 24, 67–71 (2010)CrossRef Sasaki, S.: Environmentally friendly tribology (Eco-tribology). J. Mech. Sci. Technol. 24, 67–71 (2010)CrossRef
2.
Zurück zum Zitat Nagendramma, P., Kaul, S.: Development of ecofriendly/biodegradable lubricants: an overview. Renew. Sustain. Energy Rev. 16(1), 764–774 (2012)CrossRef Nagendramma, P., Kaul, S.: Development of ecofriendly/biodegradable lubricants: an overview. Renew. Sustain. Energy Rev. 16(1), 764–774 (2012)CrossRef
3.
Zurück zum Zitat Ginzburg, B., Tochil’nikov, D., Bakhareva, V., Anisimov, A., Kireenko, O.: Polymeric materials for water-lubricated plain bearings. Russ. J. Appl. Chem. 79(5), 695–706 (2006)CrossRef Ginzburg, B., Tochil’nikov, D., Bakhareva, V., Anisimov, A., Kireenko, O.: Polymeric materials for water-lubricated plain bearings. Russ. J. Appl. Chem. 79(5), 695–706 (2006)CrossRef
4.
Zurück zum Zitat Brostow, W., Kovačevic, V., Vrsaljko, D., Whitworth, J.: Tribology of polymers and polymer-based composites. J. Mater. Educ. 32(5), 273–290 (2010) Brostow, W., Kovačevic, V., Vrsaljko, D., Whitworth, J.: Tribology of polymers and polymer-based composites. J. Mater. Educ. 32(5), 273–290 (2010)
5.
Zurück zum Zitat Friedrich, K.: Advances in Composite Tribology. Elsevier, Amsterdam (2012) Friedrich, K.: Advances in Composite Tribology. Elsevier, Amsterdam (2012)
6.
Zurück zum Zitat Davim, J.P., Marques, N.: Evaluation of tribological behavior of polymeric materials for hip prostheses application. Tribol. Lett. 11(2), 91–94 (2001)CrossRef Davim, J.P., Marques, N.: Evaluation of tribological behavior of polymeric materials for hip prostheses application. Tribol. Lett. 11(2), 91–94 (2001)CrossRef
7.
Zurück zum Zitat Kurtz, S.M.: UHMWPE Biomaterials Handbook: Ultra high Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Academic Press, San Diego (2009) Kurtz, S.M.: UHMWPE Biomaterials Handbook: Ultra high Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Academic Press, San Diego (2009)
8.
Zurück zum Zitat Mohammad, A.S., Ali, A.B., Merah, N.: Evaluation of tribological properties of organo-clay reinforced UHMWPE nanocomposites. J. Tribol. 139(1), 1–6 (2016) Mohammad, A.S., Ali, A.B., Merah, N.: Evaluation of tribological properties of organo-clay reinforced UHMWPE nanocomposites. J. Tribol. 139(1), 1–6 (2016)
9.
Zurück zum Zitat Friedrich, K., Zhang, Z., Schlarb, A.K.: Effects of various fillers on the sliding wear of polymer composites. Compos. Sci. Technol. 65(15), 2329–2343 (2005)CrossRef Friedrich, K., Zhang, Z., Schlarb, A.K.: Effects of various fillers on the sliding wear of polymer composites. Compos. Sci. Technol. 65(15), 2329–2343 (2005)CrossRef
10.
Zurück zum Zitat Samad, M.A., Sinha, S.K.: Dry sliding and boundary lubrication performance of a UHMWPE/CNTs nanocomposite coating on steel substrates at elevated temperatures. Wear 270, 395–402 (2011)CrossRef Samad, M.A., Sinha, S.K.: Dry sliding and boundary lubrication performance of a UHMWPE/CNTs nanocomposite coating on steel substrates at elevated temperatures. Wear 270, 395–402 (2011)CrossRef
11.
Zurück zum Zitat Zoo, Y.-S., An, J.-W., Lim, D.-P., Lim, D.-S.: Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol. Lett. 16, 305–309 (2004)CrossRef Zoo, Y.-S., An, J.-W., Lim, D.-P., Lim, D.-S.: Effect of carbon nanotube addition on tribological behavior of UHMWPE. Tribol. Lett. 16, 305–309 (2004)CrossRef
12.
Zurück zum Zitat An, Y., Tai, Z., Qi, Y., Yan, X., Liu, B., Xue, Q., Pei, J.: Friction and wear properties of graphene oxide/ultrahigh-molecular-weight polyethylene composites under the lubrication of deionized water and normal saline solution. J. Appl. Polym. Sci. 131, 1–11 (2014) An, Y., Tai, Z., Qi, Y., Yan, X., Liu, B., Xue, Q., Pei, J.: Friction and wear properties of graphene oxide/ultrahigh-molecular-weight polyethylene composites under the lubrication of deionized water and normal saline solution. J. Appl. Polym. Sci. 131, 1–11 (2014)
13.
Zurück zum Zitat Tai, Z., Chen, Y., An, Y., Yan, X., Xue, Q.: Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol. Lett. 46, 55–63 (2012)CrossRef Tai, Z., Chen, Y., An, Y., Yan, X., Xue, Q.: Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol. Lett. 46, 55–63 (2012)CrossRef
14.
Zurück zum Zitat Jacobs, O., Schädel, B.: Wear behavior of carbon nanotube-reinforced polyethylene and epoxy composites. In: Friedrich, K., Schlarb, A.K. (eds.) Tribology of Polymeric Nanocomposites: Friction and Wear of Bulk Materials and Coatings, pp. 209–244. Elsevier, Kidlington (2013) Jacobs, O., Schädel, B.: Wear behavior of carbon nanotube-reinforced polyethylene and epoxy composites. In: Friedrich, K., Schlarb, A.K. (eds.) Tribology of Polymeric Nanocomposites: Friction and Wear of Bulk Materials and Coatings, pp. 209–244. Elsevier, Kidlington (2013)
15.
Zurück zum Zitat Lawal, D., Ali, A.B., Mohammed, A.S.: Tribological investigations of carbon nanotube‐reinforced polymer (UHMWPE) nanocomposites using Taguchi methodology. J. Appl. Polym. Sci. 133, 44018 (2016). doi:10.1002/app.44018 Lawal, D., Ali, A.B., Mohammed, A.S.: Tribological investigations of carbon nanotube‐reinforced polymer (UHMWPE) nanocomposites using Taguchi methodology. J. Appl. Polym. Sci. 133, 44018 (2016). doi:10.​1002/​app.​44018
16.
Zurück zum Zitat Xue, Y., Wu, W., Jacobs, O., Schädel, B.: Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym. Test. 25, 221–229 (2006)CrossRef Xue, Y., Wu, W., Jacobs, O., Schädel, B.: Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym. Test. 25, 221–229 (2006)CrossRef
17.
Zurück zum Zitat Johnson, B.B., Santare, M.H., Novotny, J.E., Advani, S.G.: Wear behavior of carbon nanotube/high density polyethylene composites. Mech. Mater. 41, 1108–1115 (2009)CrossRef Johnson, B.B., Santare, M.H., Novotny, J.E., Advani, S.G.: Wear behavior of carbon nanotube/high density polyethylene composites. Mech. Mater. 41, 1108–1115 (2009)CrossRef
18.
Zurück zum Zitat Xiong, D., Ge, S.: Friction and wear properties of UHMWPE/Al 2 O 3 ceramic under different lubricating conditions. Wear 250, 242–245 (2011)CrossRef Xiong, D., Ge, S.: Friction and wear properties of UHMWPE/Al 2 O 3 ceramic under different lubricating conditions. Wear 250, 242–245 (2011)CrossRef
19.
Zurück zum Zitat Lutton, M., Stolarski, T.: The effect of water lubrication on polymer wear under rolling contact conditions. J. Appl. Polym. Sci. 54, 771–782 (1994)CrossRef Lutton, M., Stolarski, T.: The effect of water lubrication on polymer wear under rolling contact conditions. J. Appl. Polym. Sci. 54, 771–782 (1994)CrossRef
20.
Zurück zum Zitat Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2, 992–1057 (2009)CrossRef Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials 2, 992–1057 (2009)CrossRef
21.
Zurück zum Zitat Al-Qadhi, M., Merah, N., Gasem, Z., Abu-Dheir, N., Aleem, B.: Effect of water and crude oil on mechanical and thermal properties of epoxy-clay nanocomposites. Polym. Compos. 35, 318–326 (2014)CrossRef Al-Qadhi, M., Merah, N., Gasem, Z., Abu-Dheir, N., Aleem, B.: Effect of water and crude oil on mechanical and thermal properties of epoxy-clay nanocomposites. Polym. Compos. 35, 318–326 (2014)CrossRef
22.
Zurück zum Zitat Paul, D., Robeson, L.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008)CrossRef Paul, D., Robeson, L.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008)CrossRef
23.
Zurück zum Zitat Mohammed, A.S., Ali, A.B., Merah, N.: Investigating the effect of water uptake on the tribological properties of organoclay reinforced UHMWPE nanocomposites. Tribol. Lett. 62, 1–9 (2016)CrossRef Mohammed, A.S., Ali, A.B., Merah, N.: Investigating the effect of water uptake on the tribological properties of organoclay reinforced UHMWPE nanocomposites. Tribol. Lett. 62, 1–9 (2016)CrossRef
24.
Zurück zum Zitat Maksimkin, A.V., Kaloshkin, S.D., Tcherdyntsev, V.V., Chukov, D.I., Shchetinin, I.V.: Effect of high-energy ball milling on the structure and mechanical properties of ultra-high molecular weight polyethylene. J. Appl. Polym. Sci. 130, 2971–2977 (2013)CrossRef Maksimkin, A.V., Kaloshkin, S.D., Tcherdyntsev, V.V., Chukov, D.I., Shchetinin, I.V.: Effect of high-energy ball milling on the structure and mechanical properties of ultra-high molecular weight polyethylene. J. Appl. Polym. Sci. 130, 2971–2977 (2013)CrossRef
25.
Zurück zum Zitat McNally, T., Pötschke, P., Halley, P., Murphy, M., Martin, D., Bell, S.E., Brennan, G.P., Bein, D., Lemoine, P., Quinn, J.P.: Polyethylene multiwalled carbon nanotube composites. Polymer 46, 8222–8232 (2005)CrossRef McNally, T., Pötschke, P., Halley, P., Murphy, M., Martin, D., Bell, S.E., Brennan, G.P., Bein, D., Lemoine, P., Quinn, J.P.: Polyethylene multiwalled carbon nanotube composites. Polymer 46, 8222–8232 (2005)CrossRef
26.
Zurück zum Zitat Chouit, F., Guellati, O., Boukhezar, S., Harat, A., Guerioune, M., Badi, N.: Synthesis and characterization of HDPE/N-MWNT nanocomposite films. Nanoscale Res. Lett. 9, 288–293 (2014)CrossRef Chouit, F., Guellati, O., Boukhezar, S., Harat, A., Guerioune, M., Badi, N.: Synthesis and characterization of HDPE/N-MWNT nanocomposite films. Nanoscale Res. Lett. 9, 288–293 (2014)CrossRef
27.
Zurück zum Zitat Naylor, C.C., Meier, R.J., Kip, B.J., Williams, K.P., Mason, S.M., Conroy, N., Gerrard, D.L.: Raman spectroscopy employed for the determination of the intermediate phase in polyethylene. Macromolecules 28, 2969–2978 (1995)CrossRef Naylor, C.C., Meier, R.J., Kip, B.J., Williams, K.P., Mason, S.M., Conroy, N., Gerrard, D.L.: Raman spectroscopy employed for the determination of the intermediate phase in polyethylene. Macromolecules 28, 2969–2978 (1995)CrossRef
28.
Zurück zum Zitat Colthup, N.B., Daly, L.H., Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy. Academic Press Inc., San Diego (2012) Colthup, N.B., Daly, L.H., Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy. Academic Press Inc., San Diego (2012)
29.
Zurück zum Zitat Nemanich, R., Solin, S.: First-and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392–401 (1979)CrossRef Nemanich, R., Solin, S.: First-and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392–401 (1979)CrossRef
30.
Zurück zum Zitat Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)CrossRef Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)CrossRef
31.
Zurück zum Zitat Salvetat, J.-P., Bonard, J.-M., Thomson, N., Kulik, A., Forro, L., Benoit, W., Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A 69, 255–260 (1999)CrossRef Salvetat, J.-P., Bonard, J.-M., Thomson, N., Kulik, A., Forro, L., Benoit, W., Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A 69, 255–260 (1999)CrossRef
32.
Zurück zum Zitat Pesetskii, S.S., Bogdanovich, S.P., Myshkin, N.K.: Tribological behavior of polymer nanocomposites produced by dispersion of nanofillers in molten thermoplastics. In: Friedrich, K., Schlarb, A.K. (eds.) Tribology of Polymeric Nanocomposites: Friction and Wear of Bulk Materials and Coatings, pp. 119–162. Elsevier, Kidlington (2013)CrossRef Pesetskii, S.S., Bogdanovich, S.P., Myshkin, N.K.: Tribological behavior of polymer nanocomposites produced by dispersion of nanofillers in molten thermoplastics. In: Friedrich, K., Schlarb, A.K. (eds.) Tribology of Polymeric Nanocomposites: Friction and Wear of Bulk Materials and Coatings, pp. 119–162. Elsevier, Kidlington (2013)CrossRef
Metadaten
Titel
UHMWPE Hybrid Nanocomposites for Improved Tribological Performance Under Dry and Water-Lubricated Sliding Conditions
verfasst von
Annas Bin Ali
M. Abdul Samad
N. Merah
Publikationsdatum
01.09.2017
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 3/2017
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-017-0884-y

Weitere Artikel der Ausgabe 3/2017

Tribology Letters 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.