Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2017

09.01.2017

Ultrasonic-assisted synthesis of ZnO nano particles decked with few layered graphene nanocomposite as photoanode in dye-sensitized solar cell

verfasst von: Satish Bykkam, Venkateshwara Rao Kalagadda, Bikshalu Kalagadda, Karthik Paneer Selvam, Yasuhiko Hayashi

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

ZnO decked few layered graphene (FLG; 1.0, 2.0 and 3.0 wt%) nanocomposites were synthesized by simple and cost effective way using ultrasonic-assisted synthesis method. The morphological, optical and structural properties of as-synthesized nanocomposites were analyzed by field emission scanning electron microscopy and high-resolution transmission electron microscopy, UV–Visible spectroscopy with diffuse reflectance, fourier transform infrared spectroscopy, X-ray diffractometry and ramam spectroscopy. The synthesized FLG (1.0, 2.0 and 3.0 wt%)/ZnO nanocomposite were used as photoanode materials and deposited as thin films on fluorine-doped tin oxide substrate by doctor blade method for dye-sensitized solar cell (DSSC) fabrication. By varying the FLG weight percentage (1.0, 2.0 and 3.0 wt%) in ZnO nanocomposites the power conversion efficiency (PCE) in DSSC was optimized. Using N719 dye the current density–voltage (J–V) was measured under AM 1.5G, 100 m W/m2 of the solar simulator. Results obtained after optimization showed PCE of 4.61% at the suitable FLG (1.0 wt%)/ZnO, compared to ZnO and other photoanodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Chiba, A. Islam, Y. Watanable, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 25, 638–640 (2006)CrossRef Y. Chiba, A. Islam, Y. Watanable, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 25, 638–640 (2006)CrossRef
2.
Zurück zum Zitat N. Vlachopoulos, V. Shklover, C.H. Fischer, M. Gratzel, Acid-base equilibria of (2,2′-Bipyrudyl-4,4′-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 38, 6298–6305 (1999)CrossRef N. Vlachopoulos, V. Shklover, C.H. Fischer, M. Gratzel, Acid-base equilibria of (2,2′-Bipyrudyl-4,4′-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 38, 6298–6305 (1999)CrossRef
3.
Zurück zum Zitat T. Bessho, S.M. Zakeeruddin, C.Y. Yeh, E.W.G. Diau, M. Gratzel, Highly efficient mesoscopic dye-sensitized cells based on donar-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. 49, 6646–6649 (2010)CrossRef T. Bessho, S.M. Zakeeruddin, C.Y. Yeh, E.W.G. Diau, M. Gratzel, Highly efficient mesoscopic dye-sensitized cells based on donar-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. 49, 6646–6649 (2010)CrossRef
4.
Zurück zum Zitat Sarita Bose, Virendra Soni and K. R. Genwa, Recent Advances and future prospects for dye sensitized solar cells: a review, Int. J. Sci. Res. Publ. 5(4), 1–9 (2015) Sarita Bose, Virendra Soni and K. R. Genwa, Recent Advances and future prospects for dye sensitized solar cells: a review, Int. J. Sci. Res. Publ. 5(4), 1–9 (2015)
5.
Zurück zum Zitat O. Lupan, V.M. Guérin, L. Ghimpu, I.M. Tiginyanu, T. Pauporté, Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chem. Phys. Lett. 550, 125–129 (2012)CrossRef O. Lupan, V.M. Guérin, L. Ghimpu, I.M. Tiginyanu, T. Pauporté, Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chem. Phys. Lett. 550, 125–129 (2012)CrossRef
6.
Zurück zum Zitat E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, R.F.P. Martins, Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 17, 590–594 (2005)CrossRef E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, R.F.P. Martins, Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 17, 590–594 (2005)CrossRef
7.
Zurück zum Zitat K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida, Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology. 18, 365709 (2007)CrossRef K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida, Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology. 18, 365709 (2007)CrossRef
8.
Zurück zum Zitat K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69–74 (2007)CrossRef K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69–74 (2007)CrossRef
9.
Zurück zum Zitat M.S. Akhtar, M.A. Khan, M.S. Jeon, O.-B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta. 53, 7869–7874 (2008)CrossRef M.S. Akhtar, M.A. Khan, M.S. Jeon, O.-B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta. 53, 7869–7874 (2008)CrossRef
10.
Zurück zum Zitat N.N. Dinh, M.-C. Bernard, A.H.-L. Goff, T. Stergiopoulos, P. Falaras, Photoelectrochemical solar cells based on SnO2 nanocrystalline films. Competes Rendus Chimie 9, 676–683 (2006)CrossRef N.N. Dinh, M.-C. Bernard, A.H.-L. Goff, T. Stergiopoulos, P. Falaras, Photoelectrochemical solar cells based on SnO2 nanocrystalline films. Competes Rendus Chimie 9, 676–683 (2006)CrossRef
11.
Zurück zum Zitat D.B. Menzies, R. Cervini, Y.-B. Cheng, G.P. Simon, Nanostructured ZrO2-coated TiO2 electrodes for dye-sensitised solar cells. J. Sol–Gel Sci. Technol. 32, 363–366 (2004)CrossRef D.B. Menzies, R. Cervini, Y.-B. Cheng, G.P. Simon, Nanostructured ZrO2-coated TiO2 electrodes for dye-sensitised solar cells. J. Sol–Gel Sci. Technol. 32, 363–366 (2004)CrossRef
12.
Zurück zum Zitat R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818–4822 (2004)CrossRef R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 108, 4818–4822 (2004)CrossRef
13.
Zurück zum Zitat K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors—a status review. Thin Solid Films. 102, 1–46 (1983)CrossRef K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors—a status review. Thin Solid Films. 102, 1–46 (1983)CrossRef
14.
Zurück zum Zitat S.-S. Lin, J.-L. Huang, D.-F. Lii, Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering. Mater. Chem. Phys. 90, 22–30 (2005)CrossRef S.-S. Lin, J.-L. Huang, D.-F. Lii, Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering. Mater. Chem. Phys. 90, 22–30 (2005)CrossRef
15.
Zurück zum Zitat D. Song, A.G. Aberle, J. Xia, Optimization of ZnO: Al films by change of sputter gas pressure for solar cell application. Appl. Surf. Sci. 195, 291–296 (2002)CrossRef D. Song, A.G. Aberle, J. Xia, Optimization of ZnO: Al films by change of sputter gas pressure for solar cell application. Appl. Surf. Sci. 195, 291–296 (2002)CrossRef
16.
Zurück zum Zitat F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, B. Zou, The optical properties of ZnO sheets electrodeposited on ITO glass. Mater. Lett. 61, 2000–2003 (2007)CrossRef F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, B. Zou, The optical properties of ZnO sheets electrodeposited on ITO glass. Mater. Lett. 61, 2000–2003 (2007)CrossRef
17.
Zurück zum Zitat A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7, 2183–2817 (2007)CrossRef A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, ZnO nanotube based dye-sensitized solar cells. Nano Lett. 7, 2183–2817 (2007)CrossRef
18.
Zurück zum Zitat C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO. J. Phys. Chem. B. 105, 5585–5588 (2001)CrossRef C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO. J. Phys. Chem. B. 105, 5585–5588 (2001)CrossRef
19.
Zurück zum Zitat S. Sahoo, J.F. Scott, A.K. Arora, R.S. Katiyar, Self-assembled highly uniform ZnO submicrometer rods on metal grid grown by vapor–liquid–solid method. Cryst. Growth Des. 11, 3642–3647 (2011)CrossRef S. Sahoo, J.F. Scott, A.K. Arora, R.S. Katiyar, Self-assembled highly uniform ZnO submicrometer rods on metal grid grown by vapor–liquid–solid method. Cryst. Growth Des. 11, 3642–3647 (2011)CrossRef
20.
Zurück zum Zitat J.O. Hwang, D.H. Lee, J.Y. Kim, T.H. Han, B.H. Kim, M. Park, K. No, S.O. Kim, Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J. Mater. Chem. 21, 3432–3343 (2011)CrossRef J.O. Hwang, D.H. Lee, J.Y. Kim, T.H. Han, B.H. Kim, M. Park, K. No, S.O. Kim, Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. J. Mater. Chem. 21, 3432–3343 (2011)CrossRef
21.
Zurück zum Zitat M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C. 4, 145–153 (2003)CrossRef M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C. 4, 145–153 (2003)CrossRef
22.
Zurück zum Zitat B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature 353, 737–740 (1991)CrossRef B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films. Nature 353, 737–740 (1991)CrossRef
23.
Zurück zum Zitat O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49, 11–18 (2011)CrossRef O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 49, 11–18 (2011)CrossRef
24.
Zurück zum Zitat X.Z. Huang, Y.S. Yin, X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, B. Freddy, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRef X.Z. Huang, Y.S. Yin, X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, B. Freddy, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)CrossRef
25.
Zurück zum Zitat V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials:past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)CrossRef V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials:past, present and future. Prog. Mater. Sci. 56, 1178–1271 (2011)CrossRef
26.
Zurück zum Zitat S. An, B.N. Joshi, M.W. Lee, N.Y. Kim, S.S. Yoon, Electrospun graphene-ZnO nanofiber mats for photocatalysis applications. Appl. Surf. Sci. 294, 24–28 (2014)CrossRef S. An, B.N. Joshi, M.W. Lee, N.Y. Kim, S.S. Yoon, Electrospun graphene-ZnO nanofiber mats for photocatalysis applications. Appl. Surf. Sci. 294, 24–28 (2014)CrossRef
27.
Zurück zum Zitat X.F. Wu, L.L. Wen, K. Lv, K.J. Deng, D.G. Tang, H.P. Ye, D.Y. Du, S.N. Liu, M. Li, Fabrication of ZnO/graphene flake-like photocatalyst with enhanced photoreactivity. Appl. Surf. Sci.doi:10.1016/j.apsusc.2015.08.061 X.F. Wu, L.L. Wen, K. Lv, K.J. Deng, D.G. Tang, H.P. Ye, D.Y. Du, S.N. Liu, M. Li, Fabrication of ZnO/graphene flake-like photocatalyst with enhanced photoreactivity. Appl. Surf. Sci.doi:10.​1016/​j.​apsusc.​2015.​08.​061
28.
Zurück zum Zitat Y.C. Chen, K. Katsumata, Y.H. Chiu, K. Okada, N. Matsushita, Y.J. Hsu, ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal. A. 490 (2015) 1–9.CrossRef Y.C. Chen, K. Katsumata, Y.H. Chiu, K. Okada, N. Matsushita, Y.J. Hsu, ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal. A. 490 (2015) 1–9.CrossRef
29.
Zurück zum Zitat L.X. Zhang, N. Li, H.F. Jiu, G.S. Qi, Y.J. Huang, ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO. Ceram. Int. 41, 6256–6262 (2015)CrossRef L.X. Zhang, N. Li, H.F. Jiu, G.S. Qi, Y.J. Huang, ZnO-reduced graphene oxide nanocomposites as efficient photocatalysts for photocatalytic reduction of CO. Ceram. Int. 41, 6256–6262 (2015)CrossRef
30.
Zurück zum Zitat H.Y. He, Photoinduced superhydrophilicity and high photocatalytic activity of ZnOreduced graphene oxide nanocomposite films for self-cleaning applications. Mater. Sci. Semicond. Process. 31, 200–208 (2015)CrossRef H.Y. He, Photoinduced superhydrophilicity and high photocatalytic activity of ZnOreduced graphene oxide nanocomposite films for self-cleaning applications. Mater. Sci. Semicond. Process. 31, 200–208 (2015)CrossRef
31.
Zurück zum Zitat W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1985)CrossRef W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1985)CrossRef
32.
Zurück zum Zitat Hart, J. N., D. Menzies, Y.-B. Cheng, G. P. Simon, L. Spiccia, Microwave processing of TiO2 blocking layers for dye-sensitized solar cells. J. Sol–Gel Sci. Technol. 40(1), 45–54 (2006)CrossRef Hart, J. N., D. Menzies, Y.-B. Cheng, G. P. Simon, L. Spiccia, Microwave processing of TiO2 blocking layers for dye-sensitized solar cells. J. Sol–Gel Sci. Technol. 40(1), 45–54 (2006)CrossRef
33.
Zurück zum Zitat J. Tauc, Amorphous and liquid semiconductors. Plenum Press, New York, (1974)CrossRef J. Tauc, Amorphous and liquid semiconductors. Plenum Press, New York, (1974)CrossRef
34.
Zurück zum Zitat P.C. Lian, X.F. Zhu, S.Z. Liang, Z. Li, W.S. Yang, H.H. Wang, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta. 55, 3909–3914 (2010)CrossRef P.C. Lian, X.F. Zhu, S.Z. Liang, Z. Li, W.S. Yang, H.H. Wang, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta. 55, 3909–3914 (2010)CrossRef
35.
Zurück zum Zitat M. Zhou, W. Lv, C.L. Liu, D.M. Liu, Y.P. Wang, Flower-like and hollowsphere-like ZnO Assisted by microorganisms and their UV absorption and photocatalytic performance. J. Mater. Sci. 24 (2013) 36–43. M. Zhou, W. Lv, C.L. Liu, D.M. Liu, Y.P. Wang, Flower-like and hollowsphere-like ZnO Assisted by microorganisms and their UV absorption and photocatalytic performance. J. Mater. Sci. 24 (2013) 36–43.
36.
Zurück zum Zitat S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine- reduction of graphite- and graphene oxide. Carbon. 49, 3019–3023 (2011)CrossRef S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine- reduction of graphite- and graphene oxide. Carbon. 49, 3019–3023 (2011)CrossRef
37.
Zurück zum Zitat H. Klug, L. Alexander, X-ray diffraction procedures, vol. 125 Wiley, New York (1962) H. Klug, L. Alexander, X-ray diffraction procedures, vol. 125 Wiley, New York (1962)
38.
Zurück zum Zitat P.K. Samanta, A.K. Bandyopadhyay, Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl. Nanosci. 2, 111–117 (2012)CrossRef P.K. Samanta, A.K. Bandyopadhyay, Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl. Nanosci. 2, 111–117 (2012)CrossRef
39.
Zurück zum Zitat P.K. Samanta, A.K. Bandyopadhyay, S. Basak, P. Roy Chaudhuri, Characteristics of electrochemically grown dendritic metallic zinc OPTIK. Int. J. Light Electron Optik. 12, 1520–1522 (2011)CrossRef P.K. Samanta, A.K. Bandyopadhyay, S. Basak, P. Roy Chaudhuri, Characteristics of electrochemically grown dendritic metallic zinc OPTIK. Int. J. Light Electron Optik. 12, 1520–1522 (2011)CrossRef
40.
Zurück zum Zitat P.K. Samanta, S.K. Patra, P. Roy Chaudhuri, Visible emission from ZnO nanorods synthesized by a simple wet chemical method, Int. J. Nanosci. Nanotechnol. 1, 81–90 (2009) P.K. Samanta, S.K. Patra, P. Roy Chaudhuri, Visible emission from ZnO nanorods synthesized by a simple wet chemical method, Int. J. Nanosci. Nanotechnol. 1, 81–90 (2009)
41.
Zurück zum Zitat Y. Huang, M. Liu, Z. Li, Y. Zeng, S. Liu, Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol–gel process. Mater. Sci. Eng. B. 97, 111–116 (2003)CrossRef Y. Huang, M. Liu, Z. Li, Y. Zeng, S. Liu, Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol–gel process. Mater. Sci. Eng. B. 97, 111–116 (2003)CrossRef
42.
Zurück zum Zitat L. Liao, D.H. Liu, J.C. Li, C. Liu, Q. Fuc, M.S. Ye, Synthesis and Raman analysis of D-ZnO nanostructure via vapor phase growth. Appl. Surf. Sci 240, 175–179 (2005)CrossRef L. Liao, D.H. Liu, J.C. Li, C. Liu, Q. Fuc, M.S. Ye, Synthesis and Raman analysis of D-ZnO nanostructure via vapor phase growth. Appl. Surf. Sci 240, 175–179 (2005)CrossRef
43.
Zurück zum Zitat Ilja Lange, Sina Reiter, Michael Pätzel, Anton Zykov, Alexei Nefedov, Jana Hildebrandt, Stefan Hecht, Stefan Kowarik, Christof Wöll, Georg Heimel, Dieter Neher, tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 1–10 (2014) Ilja Lange, Sina Reiter, Michael Pätzel, Anton Zykov, Alexei Nefedov, Jana Hildebrandt, Stefan Hecht, Stefan Kowarik, Christof Wöll, Georg Heimel, Dieter Neher, tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 1–10 (2014)
44.
Zurück zum Zitat R. Czrew, B. Foley, D. Tekleab, A. Rubio, P. Ajayan, D. Carroll, Subatrate-interface interaction between carbon nanotubes and the supporting substrate, Phys. Rev. B. 66(033408), 334081–334084 (2002) R. Czrew, B. Foley, D. Tekleab, A. Rubio, P. Ajayan, D. Carroll, Subatrate-interface interaction between carbon nanotubes and the supporting substrate, Phys. Rev. B. 66(033408), 334081–334084 (2002)
45.
Zurück zum Zitat N. Andersson, P. Johansson, N. Broms, D. Yu, W.R. Lupo, Salaneck, Fluorine tin oxide as an alternative to indium tin oxide in polymer leds. Adv. Mater. 10, 859–863 (1998)CrossRef N. Andersson, P. Johansson, N. Broms, D. Yu, W.R. Lupo, Salaneck, Fluorine tin oxide as an alternative to indium tin oxide in polymer leds. Adv. Mater. 10, 859–863 (1998)CrossRef
Metadaten
Titel
Ultrasonic-assisted synthesis of ZnO nano particles decked with few layered graphene nanocomposite as photoanode in dye-sensitized solar cell
verfasst von
Satish Bykkam
Venkateshwara Rao Kalagadda
Bikshalu Kalagadda
Karthik Paneer Selvam
Yasuhiko Hayashi
Publikationsdatum
09.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6301-8

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science: Materials in Electronics 8/2017 Zur Ausgabe

Neuer Inhalt