Skip to main content
Erschienen in: Russian Journal of Nondestructive Testing 2/2021

01.02.2021 | ACOUSTIC METHODS

Ultrasonic Testing of Welds in Thin-Walled Titanium Shells Using an Incomplete Penetration Indicator

verfasst von: R. R. Iskhuzhin, V. N. Borisov, V. G. Atavin, A. A. Uzkikh, K. K. Khafizova

Erschienen in: Russian Journal of Nondestructive Testing | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the procedure of ultrasonic quality control of weld seams in thin-walled titanium-alloy shells with a thickness of 0.6 mm. Publications devoted to the excitation and propagation of Lamb waves and practical problems of ultrasonic inspection of thin-walled products are reviewed. The problem of detecting adhesions (areas of a weld seam with lack of penetration that conduct ultrasonic waves well but do not provide mechanical strength) is solved. It is proposed to use a corner groove as an indicator of lack of penetration in the weld. The propagation of different modes of Lamb waves in the material is analyzed, and the optimal testing parameters are selected. High information content of the signal is achieved using wavelet analysis and fine-pitch precision digital filters. Defectograms of a weld containing defective and defect-free areas are analyzed. The results of ultrasound scanning are compared with metallography data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bergmann, L., Der Ultraschall und seine Anwendung in Wissenschaft und Technik, Zürich, 1954. Bergmann, L., Der Ultraschall und seine Anwendung in Wissenschaft und Technik, Zürich, 1954.
2.
Zurück zum Zitat Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Application of Rayleigh and Lamb Ultrasonic Waves in Technology), Moscow: Nauka, 1966. Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Application of Rayleigh and Lamb Ultrasonic Waves in Technology), Moscow: Nauka, 1966.
3.
Zurück zum Zitat Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973. Brekhovskikh, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973.
4.
Zurück zum Zitat Vinogradova, M.B., Rudenko, O.V., and Sukhorukiy, A.P., Teoriya voln (Wave theory), Moscow: Nauka, 1979. Vinogradova, M.B., Rudenko, O.V., and Sukhorukiy, A.P., Teoriya voln (Wave theory), Moscow: Nauka, 1979.
5.
Zurück zum Zitat Kino, S., Acoustic Waves, Englewood Cliffs, NJ: Prentice-Hall, 1987. Kino, S., Acoustic Waves, Englewood Cliffs, NJ: Prentice-Hall, 1987.
6.
Zurück zum Zitat Krautkremer, I. and Krautkremer, G., Ul’trazvukovoi kontrol’ materialov (Ultrasonic Inspection of Materials), Moscow: Metallurgiya, 1991. Krautkremer, I. and Krautkremer, G., Ul’trazvukovoi kontrol’ materialov (Ultrasonic Inspection of Materials), Moscow: Metallurgiya, 1991.
7.
Zurück zum Zitat Shcherbinskii, V.G. and Aleshin, N.P., Ul’trazvukovoi kontrol’ svarnykh soedinenii (Ultrasonic Testing of Welded Joints), Moscow: Izd. Mosk. Gos. Tekh. Univ. im. N.E. Bauman, 2000, 3rd ed. Shcherbinskii, V.G. and Aleshin, N.P., Ul’trazvukovoi kontrol’ svarnykh soedinenii (Ultrasonic Testing of Welded Joints), Moscow: Izd. Mosk. Gos. Tekh. Univ. im. N.E. Bauman, 2000, 3rd ed.
8.
Zurück zum Zitat Nerazrushayuschiy kontrol’. Spravochnik v 8 tomakh (Nondestructive Testing—A Handbook in Eight Volumes), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2008, vol. 3. Nerazrushayuschiy kontrol’. Spravochnik v 8 tomakh (Nondestructive Testing—A Handbook in Eight Volumes), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2008, vol. 3.
9.
Zurück zum Zitat Deryabin, A.A., Development of criteria for assessing the types of defects in welded joints of thin-walled pipes by Lamb waves, Cand. Sci. (Eng.) Dissertation, Moscow: Bauman Moscow State Technical University, 2008. Deryabin, A.A., Development of criteria for assessing the types of defects in welded joints of thin-walled pipes by Lamb waves, Cand. Sci. (Eng.) Dissertation, Moscow: Bauman Moscow State Technical University, 2008.
10.
Zurück zum Zitat Loshitskii, A.R., Theoretical studies of the propagation of Lamb waves in elastic plates, Cand. Sci. (Eng.) Dissertation, Moscow: ZAO TsNIIOMTP, 2001. Loshitskii, A.R., Theoretical studies of the propagation of Lamb waves in elastic plates, Cand. Sci. (Eng.) Dissertation, Moscow: ZAO TsNIIOMTP, 2001.
11.
Zurück zum Zitat Korobov, A.I. and Izosimova, M.Yu., Nonlinear Lamb waves in a metal plate with defects, Acoust. Phys., 2006, vol. 52, no. 5, pp. 589–597.CrossRef Korobov, A.I. and Izosimova, M.Yu., Nonlinear Lamb waves in a metal plate with defects, Acoust. Phys., 2006, vol. 52, no. 5, pp. 589–597.CrossRef
12.
Zurück zum Zitat Kuznetsov, S.V., Lamb waves in anisotropic plates (review), Acoust. Phys., 2014, vol. 60, no. 1, pp. 95–103.CrossRef Kuznetsov, S.V., Lamb waves in anisotropic plates (review), Acoust. Phys., 2014, vol. 60, no. 1, pp. 95–103.CrossRef
13.
Zurück zum Zitat Il’yashenko, A.V. and Kuznetsov, S.V., Theoretical Aspects of Applying Lamb Waves in Nondestructive Testing of Anisotropic Media, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 243–259.CrossRef Il’yashenko, A.V. and Kuznetsov, S.V., Theoretical Aspects of Applying Lamb Waves in Nondestructive Testing of Anisotropic Media, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 243–259.CrossRef
14.
Zurück zum Zitat Perov, D.V. and Rinkevich, A.B., Localization of reflectors in plates by ultrasonic testing with lamb waves, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 265–278.CrossRef Perov, D.V. and Rinkevich, A.B., Localization of reflectors in plates by ultrasonic testing with lamb waves, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 265–278.CrossRef
15.
Zurück zum Zitat Burkov, M.V., Eremin, A.V., Lyubutin, P.S., Byakov, A.V., and Panin, S.V., Applying an ultrasonic Lamb wave based technique to testing the condition of V96ts3T12 aluminum alloy, Russ. J. Nondestr. Test., 2017, vol. 53, no. 12, pp. 817–829.CrossRef Burkov, M.V., Eremin, A.V., Lyubutin, P.S., Byakov, A.V., and Panin, S.V., Applying an ultrasonic Lamb wave based technique to testing the condition of V96ts3T12 aluminum alloy, Russ. J. Nondestr. Test., 2017, vol. 53, no. 12, pp. 817–829.CrossRef
16.
Zurück zum Zitat Kazakov, V.V., Detection and determination of the position of a crack in a plate by a nonlinear modulation method using Lamb waves, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 2018, vol. 61, no. 7, pp. 555–565. Kazakov, V.V., Detection and determination of the position of a crack in a plate by a nonlinear modulation method using Lamb waves, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 2018, vol. 61, no. 7, pp. 555–565.
17.
Zurück zum Zitat Burkov, M.V., Lyubutin, P.S., and Byakov, A.V., Lamb wave ultrasonic detection of barely visible impact damages of CFRP, Russ. J. Nondestr. Test., 2019, vol. 55, no. 2, pp. 89–101.CrossRef Burkov, M.V., Lyubutin, P.S., and Byakov, A.V., Lamb wave ultrasonic detection of barely visible impact damages of CFRP, Russ. J. Nondestr. Test., 2019, vol. 55, no. 2, pp. 89–101.CrossRef
18.
Zurück zum Zitat Aversheva, A.V. and Kuznetsov, S.V., Numerical modeling of the propagation of Lamb waves in an isotropic layer, Int. J. Comput. Civ. Struct. Eng., 2019, vol. 15, no. 2, pp. 14–23. Aversheva, A.V. and Kuznetsov, S.V., Numerical modeling of the propagation of Lamb waves in an isotropic layer, Int. J. Comput. Civ. Struct. Eng., 2019, vol. 15, no. 2, pp. 14–23.
19.
Zurück zum Zitat Barkhatov, V.A., Development of methods of ultrasonic nondestructive testing of welded joints, Russ. J. Nondestr. Test., 2003, vol. 39, no. 1, pp. 23–47.CrossRef Barkhatov, V.A., Development of methods of ultrasonic nondestructive testing of welded joints, Russ. J. Nondestr. Test., 2003, vol. 39, no. 1, pp. 23–47.CrossRef
20.
Zurück zum Zitat Aleshin, N.P. and Deryabin, A.A., Development of criteria for assessing the types of defects in welded joints of thin-walled pipes by Lamb waves, Kontrol’. Diagn., 2008, no. 2, pp. 30–33. Aleshin, N.P. and Deryabin, A.A., Development of criteria for assessing the types of defects in welded joints of thin-walled pipes by Lamb waves, Kontrol’. Diagn., 2008, no. 2, pp. 30–33.
21.
Zurück zum Zitat Burkin, S.P., Serebryakov, A.V., Markov, A.D., and Serebryakov, A.V., Improvement of the technique of ultrasonic testing of small-diameter pipes, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 12, pp. 45–49. Burkin, S.P., Serebryakov, A.V., Markov, A.D., and Serebryakov, A.V., Improvement of the technique of ultrasonic testing of small-diameter pipes, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 12, pp. 45–49.
22.
Zurück zum Zitat Deryabin, A.A., Remizov, A.L., and Prilutsky, M.A., Solid-state model of diffraction of Lamb waves in the presence of crack-like defects, Aktual. Probl. Gumanitarnykh Estestv. Nauk., 2013, no. 11-1, pp. 98–106. Deryabin, A.A., Remizov, A.L., and Prilutsky, M.A., Solid-state model of diffraction of Lamb waves in the presence of crack-like defects, Aktual. Probl. Gumanitarnykh Estestv. Nauk., 2013, no. 11-1, pp. 98–106.
23.
Zurück zum Zitat Deryabin, A.A., Remizov, A.L., and Prilutsky, M.A., Solid-state model of diffraction of Lamb waves in the presence of volumetric defects, Aktual. Probl. Gumanitarnykh Estestv. Nauk., 2013, no. 12-1, pp. 77–82. Deryabin, A.A., Remizov, A.L., and Prilutsky, M.A., Solid-state model of diffraction of Lamb waves in the presence of volumetric defects, Aktual. Probl. Gumanitarnykh Estestv. Nauk., 2013, no. 12-1, pp. 77–82.
24.
Zurück zum Zitat Burkov, M.V., Panin, S.V., Byakov, A.V., Lyubutin, P.S., and Eremin, A.V., Application of the ultrasonic method using Lamb waves for monitoring the state of aluminum alloys. Part 1. Static mechanical tests, Izv. Vyssh. Uchebn. Zaved. Fiz., 2015, vol. 58, no. 6-2, pp. 25–30. Burkov, M.V., Panin, S.V., Byakov, A.V., Lyubutin, P.S., and Eremin, A.V., Application of the ultrasonic method using Lamb waves for monitoring the state of aluminum alloys. Part 1. Static mechanical tests, Izv. Vyssh. Uchebn. Zaved. Fiz., 2015, vol. 58, no. 6-2, pp. 25–30.
25.
Zurück zum Zitat Burkov, M.V., Panin, S.V., Byakov, A.V., Lyubutin, P.S., and Eremin, A.V., Application of the ultrasonic method using Lamb waves for monitoring the state of aluminum alloys. Part 2. Cyclic mechanical tests, Izv. Vyssh. Uchebn. Zaved. Fiz., 2015, vol. 58, no. 6-2, pp. 31–35. Burkov, M.V., Panin, S.V., Byakov, A.V., Lyubutin, P.S., and Eremin, A.V., Application of the ultrasonic method using Lamb waves for monitoring the state of aluminum alloys. Part 2. Cyclic mechanical tests, Izv. Vyssh. Uchebn. Zaved. Fiz., 2015, vol. 58, no. 6-2, pp. 31–35.
26.
Zurück zum Zitat Kopytov, D.V., Kuznetsov, M.N., Babenkov, M.V., and Gurevich, D.V., Experience in the use of ultrasonic scanning using Lamb waves when inspecting the bottoms of tanks, Avtom., Telemekh. Svyaz Neft. Prom-sti., 2015, no. 12, pp. 4–6. Kopytov, D.V., Kuznetsov, M.N., Babenkov, M.V., and Gurevich, D.V., Experience in the use of ultrasonic scanning using Lamb waves when inspecting the bottoms of tanks, Avtom., Telemekh. Svyaz Neft. Prom-sti., 2015, no. 12, pp. 4–6.
27.
Zurück zum Zitat Murav’eva, O.V. and Murav’ev, V.V., Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 363–369.CrossRef Murav’eva, O.V. and Murav’ev, V.V., Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 363–369.CrossRef
28.
Zurück zum Zitat Murav’ev, V.V., Murav’ieva, O.V., and Volkova, L.V., Influence of anisotropy of mechanical properties of thin-rolled steel rolled stock on informative parameters of Lamb waves, Stal’, 2016, no. 10, pp. 75–79. Murav’ev, V.V., Murav’ieva, O.V., and Volkova, L.V., Influence of anisotropy of mechanical properties of thin-rolled steel rolled stock on informative parameters of Lamb waves, Stal’, 2016, no. 10, pp. 75–79.
29.
Zurück zum Zitat Evdokimov, A.A., Distribution and motion of the roots of the dispersion equation for Lamb waves in the complex plane, Ekol. Vestn. Nauchn. Tsentrov. Chern. Ekon. Sodruzhestva, 2017, no. 3, pp. 30–37. Evdokimov, A.A., Distribution and motion of the roots of the dispersion equation for Lamb waves in the complex plane, Ekol. Vestn. Nauchn. Tsentrov. Chern. Ekon. Sodruzhestva, 2017, no. 3, pp. 30–37.
30.
Zurück zum Zitat Nirbhay, M., Dixit, A., and Misra, R.K., Finite element modelling of Lamb waves propagation in 3D plates and brass tubes for damage detection, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 308–329.CrossRef Nirbhay, M., Dixit, A., and Misra, R.K., Finite element modelling of Lamb waves propagation in 3D plates and brass tubes for damage detection, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 308–329.CrossRef
31.
Zurück zum Zitat Iskhuzhin, R.R. and Atavin, V.G., Determination of the optimal angle of excitation of Lamb waves using a phased antenna array, XXI Vserossiiskaya konferentsiya po nerazrushayuschemu kontrolyu I tekhnicheskoi diagnostike: sbornik trudov (XXI All-Russ. Conf. Nondestr. Test. Tech. Diagn. Proc.), Moscow: Spektr, 2017. Iskhuzhin, R.R. and Atavin, V.G., Determination of the optimal angle of excitation of Lamb waves using a phased antenna array, XXI Vserossiiskaya konferentsiya po nerazrushayuschemu kontrolyu I tekhnicheskoi diagnostike: sbornik trudov (XXI All-Russ. Conf. Nondestr. Test. Tech. Diagn. Proc.), Moscow: Spektr, 2017.
32.
Zurück zum Zitat Gurevich, S.Yu., Petrov, Yu.V., and Golubev, E.V., Thickness gauging of thin metalware with ultrasound excited by laser nanopulses, Russ. J. Nondestr. Test., 2018, vol. 54, no. 3, pp. 147–150.CrossRef Gurevich, S.Yu., Petrov, Yu.V., and Golubev, E.V., Thickness gauging of thin metalware with ultrasound excited by laser nanopulses, Russ. J. Nondestr. Test., 2018, vol. 54, no. 3, pp. 147–150.CrossRef
33.
Zurück zum Zitat Ze-Yu Don, Hai-Tao Wang, Xian-Ming Yang, Xin Li, Jun Shu, and Meng Hao Jiang, Research for evaluation method based on Lamb waves for thickness of ship deck beams, Russ. J. Nondestr. Test., 2020, vol. 56, no. 7, pp. 556–565.CrossRef Ze-Yu Don, Hai-Tao Wang, Xian-Ming Yang, Xin Li, Jun Shu, and Meng Hao Jiang, Research for evaluation method based on Lamb waves for thickness of ship deck beams, Russ. J. Nondestr. Test., 2020, vol. 56, no. 7, pp. 556–565.CrossRef
34.
Zurück zum Zitat Grigorievsky, V.I., Kozlov, A.I., Plessky, V.P., and Tereshkov, V.P., Calculation of dispersion curves of Lamb modes in YZ-cut lithium niobate plates, Akust. Zh., 1985, vol. 37, no. 1, pp. 42–44. Grigorievsky, V.I., Kozlov, A.I., Plessky, V.P., and Tereshkov, V.P., Calculation of dispersion curves of Lamb modes in YZ-cut lithium niobate plates, Akust. Zh., 1985, vol. 37, no. 1, pp. 42–44.
35.
Zurück zum Zitat Barkhatov, V.A., Solution of the one-dimensional inverse acoustic problem with allowance for velocity dispersion and frequency-dependent wave attenuation, Russ. J. Nondestr. Test., 2009, vol. 45, no. 1, pp. 29–39.CrossRef Barkhatov, V.A., Solution of the one-dimensional inverse acoustic problem with allowance for velocity dispersion and frequency-dependent wave attenuation, Russ. J. Nondestr. Test., 2009, vol. 45, no. 1, pp. 29–39.CrossRef
36.
Zurück zum Zitat Terent’ev, D.A. and Popkov, Y.S., Determination of the parameters of the dispersion curves of Lamb waves with the use of the Hough transform of the spectrogram of an AE signal, Russ. J. Nondestr. Test., 2014, vol. 50, no. 1, pp. 19–28.CrossRef Terent’ev, D.A. and Popkov, Y.S., Determination of the parameters of the dispersion curves of Lamb waves with the use of the Hough transform of the spectrogram of an AE signal, Russ. J. Nondestr. Test., 2014, vol. 50, no. 1, pp. 19–28.CrossRef
37.
Zurück zum Zitat Zakharov, D.D., Parametric analysis of complex dispersion curves for flexural Lamb waves in layered plates in the low-frequency range, Acoust. Phys., 2018, vol. 64, no. 4, pp. 387–401.CrossRef Zakharov, D.D., Parametric analysis of complex dispersion curves for flexural Lamb waves in layered plates in the low-frequency range, Acoust. Phys., 2018, vol. 64, no. 4, pp. 387–401.CrossRef
46.
52.
Zurück zum Zitat Xiao, W., Yu, L., Joseph, R., and Giurgiutiu, V., Fatigue-crack detection and monitoring through the scattered wave two-dimensional cross-correlation imaging method using piezoelectric transducers, Sensors (Switzerland), 2020, vol. 20, no. 11, p. 3035. https://doi.org/10.3390/s20113035CrossRef Xiao, W., Yu, L., Joseph, R., and Giurgiutiu, V., Fatigue-crack detection and monitoring through the scattered wave two-dimensional cross-correlation imaging method using piezoelectric transducers, Sensors (Switzerland), 2020, vol. 20, no. 11, p. 3035. https://​doi.​org/​10.​3390/​s20113035CrossRef
55.
Zurück zum Zitat Ewald, V., Groves, R., and Benedictus, R., Integrative approach for transducer positioning optimization for ultrasonic structural health monitoring for the detection of deterministic and probabilistic damage location, Struct. Health Monit., 2020. https://doi.org/10.1177/1475921720933172 Ewald, V., Groves, R., and Benedictus, R., Integrative approach for transducer positioning optimization for ultrasonic structural health monitoring for the detection of deterministic and probabilistic damage location, Struct. Health Monit., 2020. https://​doi.​org/​10.​1177/​1475921720933172​
65.
Zurück zum Zitat Ismail, N., Hafizi, Z.M., Nizwan, C.K.E., and Ali, S., Interactions of Lamb waves with defects in a thin metallic plate using the finite element method, in Advances in Mechatronics, Manufacturing, and Mechanical Engineering. Lecture Notes in Mechanical Engineering, Zakaria, M., Abdul Majeed, A., and Hassan, M., Eds., Singapore: Springer, 2021. https://doi.org/10.1007/978-981-15-7309-5_19 Ismail, N., Hafizi, Z.M., Nizwan, C.K.E., and Ali, S., Interactions of Lamb waves with defects in a thin metallic plate using the finite element method, in Advances in Mechatronics, Manufacturing, and Mechanical Engineering. Lecture Notes in Mechanical Engineering, Zakaria, M., Abdul Majeed, A., and Hassan, M., Eds., Singapore: Springer, 2021. https://​doi.​org/​10.​1007/​978-981-15-7309-5_​19
69.
73.
Zurück zum Zitat Tai, S., Kotobuki, F., Wang, L., and Mal, A., Modeling Ultrasonic Elastic Waves in Fiber-Metal Laminate Structures in Presence of Sources and Defects, J. Nondestr. Eval. Diagn. Progn. Eng. Syst., 2020, vol. 3, no. 4. https://doi.org/10.1115/1.4046946 Tai, S., Kotobuki, F., Wang, L., and Mal, A., Modeling Ultrasonic Elastic Waves in Fiber-Metal Laminate Structures in Presence of Sources and Defects, J. Nondestr. Eval. Diagn. Progn. Eng. Syst., 2020, vol. 3, no. 4. https://​doi.​org/​10.​1115/​1.​4046946
79.
Zurück zum Zitat Alnuaimi, H., Amjad, U., Russo, P., Lopresto, V., and Kundu, T., Monitoring damage in composite plates from crack initiation to macro-crack propagation combining linear and nonlinear ultrasonic techniques, Struct. Health Monit., 2020. https://doi.org/10.1177/1475921720922922 Alnuaimi, H., Amjad, U., Russo, P., Lopresto, V., and Kundu, T., Monitoring damage in composite plates from crack initiation to macro-crack propagation combining linear and nonlinear ultrasonic techniques, Struct. Health Monit., 2020. https://​doi.​org/​10.​1177/​1475921720922922​
80.
Zurück zum Zitat Weiland, J., Hesser, D. F., Xiong, W., Schiebahn, A., Markert, B., and Reisgen, U., Structural health monitoring of an adhesively bonded CFRP aircraft fuselage by ultrasonic Lamb Waves. Proceedings of the Institution of Mechanical Engineers, Part G, J. Aerosp. Eng., 2020. https://doi.org/10.1177/0954410020950511 Weiland, J., Hesser, D. F., Xiong, W., Schiebahn, A., Markert, B., and Reisgen, U., Structural health monitoring of an adhesively bonded CFRP aircraft fuselage by ultrasonic Lamb Waves. Proceedings of the Institution of Mechanical Engineers, Part G, J. Aerosp. Eng., 2020. https://​doi.​org/​10.​1177/​0954410020950511​
82.
Zurück zum Zitat Mogil’ner, L.Yu., The use of a cylindrical reflector for adjusting the sensitivity during ultrasonic testing, Defectoskopiya, 2018, no. 7, pp. 27–36. Mogil’ner, L.Yu., The use of a cylindrical reflector for adjusting the sensitivity during ultrasonic testing, Defectoskopiya, 2018, no. 7, pp. 27–36.
83.
Zurück zum Zitat Mogil’ner, L.Yu., Smorodinskii, Ya.G., Ultrasonic flaw detection: Adjustment and calibration of equipment using samples with cylindrical drilling, Russ. J. Nondestr. Test., 2018, vol. 54, no. 9, pp. 630–637.CrossRef Mogil’ner, L.Yu., Smorodinskii, Ya.G., Ultrasonic flaw detection: Adjustment and calibration of equipment using samples with cylindrical drilling, Russ. J. Nondestr. Test., 2018, vol. 54, no. 9, pp. 630–637.CrossRef
84.
Zurück zum Zitat GOST 3722-2014. Rolling bearings. Steel balls. Technical conditions, Moscow: Standartinform, 2015. GOST 3722-2014. Rolling bearings. Steel balls. Technical conditions, Moscow: Standartinform, 2015.
Metadaten
Titel
Ultrasonic Testing of Welds in Thin-Walled Titanium Shells Using an Incomplete Penetration Indicator
verfasst von
R. R. Iskhuzhin
V. N. Borisov
V. G. Atavin
A. A. Uzkikh
K. K. Khafizova
Publikationsdatum
01.02.2021
Verlag
Pleiades Publishing
Erschienen in
Russian Journal of Nondestructive Testing / Ausgabe 2/2021
Print ISSN: 1061-8309
Elektronische ISSN: 1608-3385
DOI
https://doi.org/10.1134/S1061830921020054

Weitere Artikel der Ausgabe 2/2021

Russian Journal of Nondestructive Testing 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.