Skip to main content
Erschienen in: Rare Metals 12/2020

05.08.2020 | Original Article

Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors

verfasst von: Yu-Qing Dai, Guang-Chao Li, Xin-Hai Li, Hua-Jun Guo, Zhi-Xing Wang, Guo-Chun Yan, Jie-Xi Wang

Erschienen in: Rare Metals | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphitic carbons with reasonable pore volume and appropriate graphitization degree can provide efficient Li+/electrolyte-transfer channels and ameliorate the sluggish dynamic behavior of battery-type carbon negative electrode in lithium-ion capacitors (LICs). In this work, onion-like graphitic carbon materials are obtained by using carbon quantum dots as precursors after sintering, and the effects of alkali metal salts on the structure, morphology and performance of the samples are focused. The results show that alkali metal salts as activator can etch graphitic carbons, and the specific surface area and pore size distribution are intimately related to the description of the alkali metal salt. Moreover, it also affects the graphitization degree of the materials. The porous graphitic carbons (S-GCs) obtained by NaCl activation exhibit high specific surface area (77.14 m2·g−1) and appropriate graphitization degree. It is expectable that the electrochemical performance for lithium-ions storage can be largely promoted by the smart combination of catalytic graphitization and pores-creating strategy. High-performance LICs (S-GCs//AC LICs) are achieved with high energy density of 92 Wh·kg−1 and superior rate capability (66.3 Wh·kg−1 at 10 A·g−1) together with the power density as high as 10020.2 W·kg−1.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Zame KK, Brehm CA, Nitica AT, Richard CL, Schweitzer Iii GD. Smart grid and energy storage: policy recommendations. Renew Sust Energ Rev. 2018;82:1646. Zame KK, Brehm CA, Nitica AT, Richard CL, Schweitzer Iii GD. Smart grid and energy storage: policy recommendations. Renew Sust Energ Rev. 2018;82:1646.
[2]
Zurück zum Zitat Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen ZW. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3(4):279. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen ZW. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy. 2018;3(4):279.
[3]
Zurück zum Zitat Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng YR, Gong RQ, Zheng JP, Zhang CM. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater. 2018;30(17):1705670. Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng YR, Gong RQ, Zheng JP, Zhang CM. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater. 2018;30(17):1705670.
[4]
Zurück zum Zitat Hagen M, Yan J, Cao WJ, Chen XJ, Shellikeri A, Du T, Read JA, Jow TR, Zheng JP. Hybrid lithium-ion battery-capacitor energy storage device with hybrid composite cathode based on activated carbon/LiNi0.5Co0.2Mn0.3O2. J Power Sources. 2019;433:126689. Hagen M, Yan J, Cao WJ, Chen XJ, Shellikeri A, Du T, Read JA, Jow TR, Zheng JP. Hybrid lithium-ion battery-capacitor energy storage device with hybrid composite cathode based on activated carbon/LiNi0.5Co0.2Mn0.3O2. J Power Sources. 2019;433:126689.
[5]
Zurück zum Zitat Li G, Yang Z, Yin Z, Guo H, Wang Z, Yan G, Liu Y, Li L, Wang J. Non-aqueous dual-carbon lithium-ion capacitors: a review. J Mater Chem A. 2019;7(26):15541. Li G, Yang Z, Yin Z, Guo H, Wang Z, Yan G, Liu Y, Li L, Wang J. Non-aqueous dual-carbon lithium-ion capacitors: a review. J Mater Chem A. 2019;7(26):15541.
[6]
Zurück zum Zitat Zhao L, Chen G, Yan T, Zhang J, Shi L, Zhang D. Sandwich-like C@SnS@TiO2 anodes with high power and long cycle for Li-ion storage. ACS Appl Mater Inter. 2020;12(5):5857. Zhao L, Chen G, Yan T, Zhang J, Shi L, Zhang D. Sandwich-like C@SnS@TiO2 anodes with high power and long cycle for Li-ion storage. ACS Appl Mater Inter. 2020;12(5):5857.
[7]
Zurück zum Zitat Li JH, Liu ZC, Zhang QB, Cheng Y, Zhao BT, Dai SG, Wu HH, Zhang KL, Ding D, Wu YP, Liu ML, Wang MS. Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy. 2019;57:22. Li JH, Liu ZC, Zhang QB, Cheng Y, Zhao BT, Dai SG, Wu HH, Zhang KL, Ding D, Wu YP, Liu ML, Wang MS. Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy. 2019;57:22.
[8]
Zurück zum Zitat Liu L, Zhao HP, Lei Y. Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. InfoMat. 2020;2(1):113. Liu L, Zhao HP, Lei Y. Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. InfoMat. 2020;2(1):113.
[9]
Zurück zum Zitat Wang R, Yao MJ, Niu ZQ. Smart supercapacitors from materials to devices. InfoMat. 2019;1(1):74. Wang R, Yao MJ, Niu ZQ. Smart supercapacitors from materials to devices. InfoMat. 2019;1(1):74.
[10]
Zurück zum Zitat Li ZY, Chen GR, Deng J, Li D, Yan TT, An ZX, Shi LY, Zhang DS. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustain Chem Eng. 2019;7(18):15394. Li ZY, Chen GR, Deng J, Li D, Yan TT, An ZX, Shi LY, Zhang DS. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors. ACS Sustain Chem Eng. 2019;7(18):15394.
[11]
Zurück zum Zitat Li GC, Yin ZL, Guo HJ, Wang ZX, Yan GC, Yang ZW, Liu Y, Ji XB, Wang JX. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced Lithium-ion hybrid supercapacitor. Adv Energy Mater. 2019;9(2):1802878. Li GC, Yin ZL, Guo HJ, Wang ZX, Yan GC, Yang ZW, Liu Y, Ji XB, Wang JX. Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced Lithium-ion hybrid supercapacitor. Adv Energy Mater. 2019;9(2):1802878.
[12]
Zurück zum Zitat Jagadale A, Zhou X, Xiong R, Dubal DP, Xu J, Yang S. Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater. 2019;19:314. Jagadale A, Zhou X, Xiong R, Dubal DP, Xu J, Yang S. Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater. 2019;19:314.
[13]
Zurück zum Zitat Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 2020;24:160. Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 2020;24:160.
[14]
Zurück zum Zitat Jin L, Guo X, Gong R, Zheng J, Xiang Z, Zhang C, Zheng JP. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors. Energy Storage Mater. 2019;23:409. Jin L, Guo X, Gong R, Zheng J, Xiang Z, Zhang C, Zheng JP. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors. Energy Storage Mater. 2019;23:409.
[15]
Zurück zum Zitat An YB, Chen S, Zou MM, Geng LB, Sun Z, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113. An YB, Chen S, Zou MM, Geng LB, Sun Z, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.
[16]
Zurück zum Zitat Li G, Huang Y, Yin Z, Guo H, Liu Y, Cheng H, Wu Y, Ji X, Wang J. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Mater. 2020;24:304. Li G, Huang Y, Yin Z, Guo H, Liu Y, Cheng H, Wu Y, Ji X, Wang J. Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Mater. 2020;24:304.
[17]
Zurück zum Zitat Zhang C, Xie Z, Yang W, Liang Y, Meng D, He X, Liang P, Zhang Z. NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. J Power Sources. 2020;451:227761. Zhang C, Xie Z, Yang W, Liang Y, Meng D, He X, Liang P, Zhang Z. NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. J Power Sources. 2020;451:227761.
[18]
Zurück zum Zitat Sun T, Liu G, Du L, Bu Y, Tian B. Nitrogen-doped 3D nanocarbon with nanopore defects as high-capacity and stable anode materials for sodium/lithium-ion batteries. Mater Today Energy. 2020;16:100395. Sun T, Liu G, Du L, Bu Y, Tian B. Nitrogen-doped 3D nanocarbon with nanopore defects as high-capacity and stable anode materials for sodium/lithium-ion batteries. Mater Today Energy. 2020;16:100395.
[19]
Zurück zum Zitat Yang H, Zhang C, Meng Q, Cao B, Tian G. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors. J Power Sources. 2019;431:114. Yang H, Zhang C, Meng Q, Cao B, Tian G. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors. J Power Sources. 2019;431:114.
[20]
Zurück zum Zitat Kim DS, Kim YE, Kim H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J Power Sources. 2019;422:18. Kim DS, Kim YE, Kim H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. J Power Sources. 2019;422:18.
[21]
Zurück zum Zitat Chen R, Hu Y, Shen Z, He X, Cheng Z, Pan P, Wu K, Zhang X, Tang Z. Highly mesoporous C nanofibers with graphitized pore walls fabricated via ZnCo2O4-induced activating-catalyzed-graphitization for long-lifespan lithium-ion batteries. J Mater Chem A. 2017;5(41):21679. Chen R, Hu Y, Shen Z, He X, Cheng Z, Pan P, Wu K, Zhang X, Tang Z. Highly mesoporous C nanofibers with graphitized pore walls fabricated via ZnCo2O4-induced activating-catalyzed-graphitization for long-lifespan lithium-ion batteries. J Mater Chem A. 2017;5(41):21679.
[22]
Zurück zum Zitat Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc. 2016;138(45):14915. Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc. 2016;138(45):14915.
[23]
Zurück zum Zitat Yan Z, Hu Q, Yan G, Li H, Shih K, Yang Z, Li X, Wang Z, Wang J. Co3O4/Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chem Eng J. 2017;321:495. Yan Z, Hu Q, Yan G, Li H, Shih K, Yang Z, Li X, Wang Z, Wang J. Co3O4/Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chem Eng J. 2017;321:495.
[24]
Zurück zum Zitat Ge P, Hou H, Cao X, Li S, Zhao G, Guo T, Wang C, Jiao S. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv Sci. 2018;5(6):1800080. Ge P, Hou H, Cao X, Li S, Zhao G, Guo T, Wang C, Jiao S. Multidimensional evolution of carbon structures underpinned by temperature-induced intermediate of chloride for sodium-ion batteries. Adv Sci. 2018;5(6):1800080.
[25]
Zurück zum Zitat Chen Y, Murakami N, Chen HY, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019;38(5):468. Chen Y, Murakami N, Chen HY, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019;38(5):468.
[26]
Zurück zum Zitat Liu M, Zhang Z, Dou M, Li Z, Wang F. Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon. 2019;151:28. Liu M, Zhang Z, Dou M, Li Z, Wang F. Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon. 2019;151:28.
[27]
Zurück zum Zitat Li Y, Song C, Chen J, Shang X, Chen J, Li Y, Huang M, Meng F. Sulfur and nitrogen Co-doped activated CoFe2O4@C nanotubes as an efficient material for supercapacitor applications. Carbon. 2020;162:124. Li Y, Song C, Chen J, Shang X, Chen J, Li Y, Huang M, Meng F. Sulfur and nitrogen Co-doped activated CoFe2O4@C nanotubes as an efficient material for supercapacitor applications. Carbon. 2020;162:124.
[28]
Zurück zum Zitat Song Z, Lu X, Hu Q, Ren J, Zhang W, Zheng Q, Lin D. Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium-sulfur batteries. J Power Sources. 2019;421:23. Song Z, Lu X, Hu Q, Ren J, Zhang W, Zheng Q, Lin D. Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium-sulfur batteries. J Power Sources. 2019;421:23.
[29]
Zurück zum Zitat Cui RC, Xu B, Dong HJ, Yang CC, Jiang Q. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv Sci. 2020;7:1902547. Cui RC, Xu B, Dong HJ, Yang CC, Jiang Q. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv Sci. 2020;7:1902547.
[30]
Zurück zum Zitat Zhang Q, Liu Z, Zhao B, Cheng Y, Zhang L, Wu H-H, Wang M-S, Dai S, Zhang K, Ding D, Wu Y, Liu M. Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 2019;16:632. Zhang Q, Liu Z, Zhao B, Cheng Y, Zhang L, Wu H-H, Wang M-S, Dai S, Zhang K, Ding D, Wu Y, Liu M. Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 2019;16:632.
[31]
Zurück zum Zitat Huang S, Li Z, Bo W, Zhang J, Zhao Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294. Huang S, Li Z, Bo W, Zhang J, Zhao Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater. 2018;28(10):1706294.
[32]
Zurück zum Zitat He Y, Zhuang X, Lei C, Lei L, Hou Y, Mai Y, Feng X. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today. 2019;24:103. He Y, Zhuang X, Lei C, Lei L, Hou Y, Mai Y, Feng X. Porous carbon nanosheets: synthetic strategies and electrochemical energy related applications. Nano Today. 2019;24:103.
[33]
Zurück zum Zitat Kumagai S, Abe Y, Saito T, Eguchi T, Tomioka M, Kabir M, Tashima D. Lithium-ion capacitor using rice husk-derived cathode and anode active materials adapted to uncontrolled full-pre-lithiation. J Power Sources. 2019;437:226924. Kumagai S, Abe Y, Saito T, Eguchi T, Tomioka M, Kabir M, Tashima D. Lithium-ion capacitor using rice husk-derived cathode and anode active materials adapted to uncontrolled full-pre-lithiation. J Power Sources. 2019;437:226924.
[34]
Zurück zum Zitat Zhang L, Guo Y, Shen K, Huo J, Liu Y, Guo S. Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors. J Mater Chem A. 2019;7(15):9163. Zhang L, Guo Y, Shen K, Huo J, Liu Y, Guo S. Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors. J Mater Chem A. 2019;7(15):9163.
[35]
Zurück zum Zitat Wang S, Zou K, Qian Y, Deng Y, Zhang L, Chen G. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li–S batteries. Carbon. 2019;144:745. Wang S, Zou K, Qian Y, Deng Y, Zhang L, Chen G. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li–S batteries. Carbon. 2019;144:745.
[36]
Zurück zum Zitat Liu J, Deng Y, Li X, Wang L. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain Chem Eng. 2016;4(1):177. Liu J, Deng Y, Li X, Wang L. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. ACS Sustain Chem Eng. 2016;4(1):177.
[37]
Zurück zum Zitat Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 2015;9(3):2556. Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 2015;9(3):2556.
[38]
Zurück zum Zitat Xia Q, Yang H, Wang M, Yang M, Guo Q, Wan L, Xia H, Yu Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater. 2017;7(22):1701336. Xia Q, Yang H, Wang M, Yang M, Guo Q, Wan L, Xia H, Yu Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater. 2017;7(22):1701336.
[39]
Zurück zum Zitat Shi R, Han C, Li H, Xu L, Zhang T, Li J, Lin Z, Wong CP, Kang F, Li B. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J Mater Chem A. 2018;6(35):17057. Shi R, Han C, Li H, Xu L, Zhang T, Li J, Lin Z, Wong CP, Kang F, Li B. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J Mater Chem A. 2018;6(35):17057.
[40]
Zurück zum Zitat An Y, Tian Y, Wei H, Xi B, Xiong S, Feng J, Qian Y. Porosity-and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv Funct Mater. 2020;30(9):1908721. An Y, Tian Y, Wei H, Xi B, Xiong S, Feng J, Qian Y. Porosity-and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv Funct Mater. 2020;30(9):1908721.
[41]
Zurück zum Zitat Fromm O, Heckmann A, Rodehorst UC, Frerichs J, Becker D, Winter M, Placke T. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon. 2018;128:147. Fromm O, Heckmann A, Rodehorst UC, Frerichs J, Becker D, Winter M, Placke T. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance. Carbon. 2018;128:147.
[42]
Zurück zum Zitat Chen Z, Wu R, Wang H, Zhang KHL, Song Y, Wu F, Fang F, Sun D. Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 2018;11(2):966. Chen Z, Wu R, Wang H, Zhang KHL, Song Y, Wu F, Fang F, Sun D. Embedding ZnSe nanodots in nitrogen-doped hollow carbon architectures for superior lithium storage. Nano Res. 2018;11(2):966.
[43]
Zurück zum Zitat Liu T, Zhou Z, Guo Y, Guo D, Liu G. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat Commun. 2019;10(1):1. Liu T, Zhou Z, Guo Y, Guo D, Liu G. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat Commun. 2019;10(1):1.
[44]
Zurück zum Zitat Xu T, Li D, Chen S, Sun Y, Zhang H, Xia Y, Yang D. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem Eng J. 2018;345:604. Xu T, Li D, Chen S, Sun Y, Zhang H, Xia Y, Yang D. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem Eng J. 2018;345:604.
[45]
Zurück zum Zitat Han M, Mu Y, Yuan F, Liang J, Jiang T, Bai X, Yu J. Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J Mater Chem A. 2020;8(7):3822. Han M, Mu Y, Yuan F, Liang J, Jiang T, Bai X, Yu J. Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J Mater Chem A. 2020;8(7):3822.
[46]
Zurück zum Zitat Babu B, Shaijumon MM. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. J Power Sources. 2017;353:85. Babu B, Shaijumon MM. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. J Power Sources. 2017;353:85.
[47]
Zurück zum Zitat Zhu G, Ma L, Lin H, Zhao P, Wang L, Hu Y, Chen R, Chen T, Wang Y, Tie Z, Jin Z. High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019;12(7):1713. Zhu G, Ma L, Lin H, Zhao P, Wang L, Hu Y, Chen R, Chen T, Wang Y, Tie Z, Jin Z. High-performance Li-ion capacitor based on black-TiO2-x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019;12(7):1713.
[48]
Zurück zum Zitat Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 2018;10(13):5906. Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 2018;10(13):5906.
[49]
Zurück zum Zitat Yang C, Lan JL, Ding C, Wang F, Siyal SH, Yu Y, Yang X. Three-dimensional hierarchical ternary aerogels of ultrafine TiO2 nanoparticles@porous carbon nanofibers-reduced graphene oxide for high-performance lithium-ion capacitors. Electrochim Acta. 2019;296:790. Yang C, Lan JL, Ding C, Wang F, Siyal SH, Yu Y, Yang X. Three-dimensional hierarchical ternary aerogels of ultrafine TiO2 nanoparticles@porous carbon nanofibers-reduced graphene oxide for high-performance lithium-ion capacitors. Electrochim Acta. 2019;296:790.
[50]
Zurück zum Zitat Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chemsuschem. 2014;7(7):1858. Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chemsuschem. 2014;7(7):1858.
[51]
Zurück zum Zitat Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong CP, Kang F, Lin Z, Li B. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon. 2018;140:296. Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong CP, Kang F, Lin Z, Li B. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon. 2018;140:296.
[52]
Zurück zum Zitat Zhang J, Liu X, Wang J, Shi J, Shi Z. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. Electrochim Acta. 2016;187:134. Zhang J, Liu X, Wang J, Shi J, Shi Z. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. Electrochim Acta. 2016;187:134.
[53]
Zurück zum Zitat Cai M, Sun X, Nie Y, Chen W, Qiu Z, Chen L, Liu Z, Tang H. Electrochemical performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as anode. NANO. 2017;12(04):1750051. Cai M, Sun X, Nie Y, Chen W, Qiu Z, Chen L, Liu Z, Tang H. Electrochemical performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as anode. NANO. 2017;12(04):1750051.
[54]
Zurück zum Zitat Jiao X, Hao Q, Xia X, Wu Z, Lei W. Metal organic framework derived Nb2O5@C nanoparticles grown on reduced graphene oxide for high-energy lithium ion capacitors. Chem Commun. 2019;55(18):2692. Jiao X, Hao Q, Xia X, Wu Z, Lei W. Metal organic framework derived Nb2O5@C nanoparticles grown on reduced graphene oxide for high-energy lithium ion capacitors. Chem Commun. 2019;55(18):2692.
[55]
Zurück zum Zitat Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459. Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459.
[56]
Zurück zum Zitat Wang H, Zhang Y, Ang H, Zhang Y, Tan HT, Zhang Y, Guo Y, Franklin JB, Wu X, Srinivasan M, Fan HJ, Yan Q. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater. 2016;26(18):3082. Wang H, Zhang Y, Ang H, Zhang Y, Tan HT, Zhang Y, Guo Y, Franklin JB, Wu X, Srinivasan M, Fan HJ, Yan Q. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater. 2016;26(18):3082.
[57]
Zurück zum Zitat Zhao Y, Cui Y, Shi J, Liu W, Shi Z, Chen S, Wang X, Wang H. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J Mater Chem. 2017;5(29):15243. Zhao Y, Cui Y, Shi J, Liu W, Shi Z, Chen S, Wang X, Wang H. Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J Mater Chem. 2017;5(29):15243.
Metadaten
Titel
Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors
verfasst von
Yu-Qing Dai
Guang-Chao Li
Xin-Hai Li
Hua-Jun Guo
Zhi-Xing Wang
Guo-Chun Yan
Jie-Xi Wang
Publikationsdatum
05.08.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 12/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01509-y

Weitere Artikel der Ausgabe 12/2020

Rare Metals 12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.