Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2016

01.06.2016 | Original Article

Understanding physicochemical changes in pretreated and enzyme hydrolysed hemp (Cannabis sativa) biomass for biorefinery development

verfasst von: Reinu E Abraham, Jitraporn Vongsvivut, Colin J Barrow, Munish Puri

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The physicochemical properties of hemp biomass structure to pretreatment and enzymatic hydrolysis were investigated to improve upon reducing sugar production for biofuel development. Sodium hydroxide pretreated biomass (SHPB) yielded maximum conversion of holocellulose into reducing sugar (72 %). Scanning electron microscopy (SEM) revealed that enzymatic hydrolysis generated regular micropores in the fragmented biomass structure. The thermogravimetric analysis (TGA) curve suggested the degradation of hemicellulose and cellulose, which conformed well to the subsequent nuclear magnetic resonance (NMR) studies indicating the presence of α- and β-glucose (28.4 %) and α- and β-xylose (10.7 %), the major carbohydrate components commonly found in hydrolysis products of hemicellulose and cellulose. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra showed stretching modes of the lignin acetyl group, suggesting the loosening of the polymer matrix and thus the exposure of the cellulose polymorphs. X-ray diffraction pattern indicated that enzymatic hydrolysis caused a higher crystallinity index (36.71), due to the fragmentation of amorphous cellulose leading to the reducing sugar production suitable for biofuel development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cortez DV, Roberto IC, Barbosa MHP, Milagres AMF (2014) Evaluation of cellulosic and hemicellulosic hydrolysate fermentability from sugarcane bagasse hybrids with different compositions. Biomass Conv Bioref 4:351–356CrossRef Cortez DV, Roberto IC, Barbosa MHP, Milagres AMF (2014) Evaluation of cellulosic and hemicellulosic hydrolysate fermentability from sugarcane bagasse hybrids with different compositions. Biomass Conv Bioref 4:351–356CrossRef
2.
Zurück zum Zitat Richel A, Jacquet N (2015) Microwave-assisted thermochemical and primary hydrolytic conversions of lignocellulosic resources: a review. Biomass Conv Bioref 5:115–124 Richel A, Jacquet N (2015) Microwave-assisted thermochemical and primary hydrolytic conversions of lignocellulosic resources: a review. Biomass Conv Bioref 5:115–124
3.
Zurück zum Zitat Abraham RE, Barrow CJ, Puri M (2013) Relationship to reducing sugar production and scanning electron microscope structure to pretreated hemp hurd biomass (Cannabis sativa). Biomass Bioenergy 58:180–187CrossRef Abraham RE, Barrow CJ, Puri M (2013) Relationship to reducing sugar production and scanning electron microscope structure to pretreated hemp hurd biomass (Cannabis sativa). Biomass Bioenergy 58:180–187CrossRef
4.
Zurück zum Zitat Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulase in enhancing enzymatic saccharification of preptreated hemp biomass. Biotechnol Biofuels 7: article number 90 Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulase in enhancing enzymatic saccharification of preptreated hemp biomass. Biotechnol Biofuels 7: article number 90
5.
Zurück zum Zitat Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sust Energ Rev 16:6022–6031CrossRef Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sust Energ Rev 16:6022–6031CrossRef
6.
Zurück zum Zitat Karim RA, Hussain AS, Zain AM (2014) Production of bioethanol from empty fruit bunches cellulosic biomass and Avicel PH-101 cellulose. Biomass Conv Bioref 4:333–340CrossRef Karim RA, Hussain AS, Zain AM (2014) Production of bioethanol from empty fruit bunches cellulosic biomass and Avicel PH-101 cellulose. Biomass Conv Bioref 4:333–340CrossRef
7.
Zurück zum Zitat Prade T, Svensson SE, Mattsson JE (2012) Energy balances for biogas and solid biofuel production from industrial hemp. Biomass Bioenergy 40:36–52CrossRef Prade T, Svensson SE, Mattsson JE (2012) Energy balances for biogas and solid biofuel production from industrial hemp. Biomass Bioenergy 40:36–52CrossRef
8.
Zurück zum Zitat Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crop Prod 69:29–39CrossRef Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crop Prod 69:29–39CrossRef
9.
Zurück zum Zitat Garcia C, Jaldon DD, Vignon MR (1998) Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14:251–260CrossRef Garcia C, Jaldon DD, Vignon MR (1998) Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14:251–260CrossRef
10.
Zurück zum Zitat Prade T, Svensson SE, Andersson A, Mattsson JE (2011) Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 35:3040–3049CrossRef Prade T, Svensson SE, Andersson A, Mattsson JE (2011) Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 35:3040–3049CrossRef
11.
Zurück zum Zitat Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. Laboratory analytical procedures (TP-510-42621). National Renewable Energy Laboratory, Golden, pp 1–6 Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. Laboratory analytical procedures (TP-510-42621). National Renewable Energy Laboratory, Golden, pp 1–6
12.
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of structural carbohydrates and lignin. Laboratory analytical procedures (TP-510-42618). National Renewable Energy Laboratory, Golden, pp 1–15 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of structural carbohydrates and lignin. Laboratory analytical procedures (TP-510-42618). National Renewable Energy Laboratory, Golden, pp 1–15
13.
Zurück zum Zitat Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr Polym 79:914–920CrossRef Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr Polym 79:914–920CrossRef
14.
Zurück zum Zitat Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268 Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268
15.
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRef
16.
Zurück zum Zitat Mittal A, Scott GM, Amidon TE, Kiemle DJ, Stipanovic AJ (2009) Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresour Technol 100:6398–6406CrossRef Mittal A, Scott GM, Amidon TE, Kiemle DJ, Stipanovic AJ (2009) Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresour Technol 100:6398–6406CrossRef
17.
Zurück zum Zitat Alvarez-Vasco C, Zhang X (2013) Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour Technol 150:321–327CrossRef Alvarez-Vasco C, Zhang X (2013) Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour Technol 150:321–327CrossRef
18.
Zurück zum Zitat Kamireddy SR, Li J, Abbina S, Berti M, Tucker M, Ji Y (2013) Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Ind Crop Prod 49:598–609CrossRef Kamireddy SR, Li J, Abbina S, Berti M, Tucker M, Ji Y (2013) Converting forage sorghum and sunn hemp into biofuels through dilute acid pretreatment. Ind Crop Prod 49:598–609CrossRef
19.
Zurück zum Zitat Chen Y, Stevens M, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuel 6:8CrossRef Chen Y, Stevens M, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuel 6:8CrossRef
20.
Zurück zum Zitat Sasmal S, Goud VV, Mohanty K (2012) Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energy Fuel 26:3777–3784CrossRef Sasmal S, Goud VV, Mohanty K (2012) Ultrasound assisted lime pretreatment of lignocellulosic biomass toward bioethanol production. Energy Fuel 26:3777–3784CrossRef
21.
Zurück zum Zitat Eliana C, Jorge R, Juan P, Luis R (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47CrossRef Eliana C, Jorge R, Juan P, Luis R (2014) Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118:41–47CrossRef
22.
Zurück zum Zitat Kallioinen A, Hakola M, Riekkola T, Repo T, Leskelä M, von Weymarn N, Siika-aho M (2013) A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse. Bioresour Technol 140:414–420CrossRef Kallioinen A, Hakola M, Riekkola T, Repo T, Leskelä M, von Weymarn N, Siika-aho M (2013) A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse. Bioresour Technol 140:414–420CrossRef
23.
Zurück zum Zitat Zhou W, Yu Y, Liu D, Wu H (2013) Rapid recovery of fermentable sugars for biofuel production from enzymatic hydrolysis of microcrystalline cellulose by hot-compressed water pretreatment. Energy Fuel 27:4777–4784CrossRef Zhou W, Yu Y, Liu D, Wu H (2013) Rapid recovery of fermentable sugars for biofuel production from enzymatic hydrolysis of microcrystalline cellulose by hot-compressed water pretreatment. Energy Fuel 27:4777–4784CrossRef
24.
Zurück zum Zitat Chen B-Y, Chen S-W, Wang H-T (2012) Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. Biomass Bioenergy 39:182–191CrossRef Chen B-Y, Chen S-W, Wang H-T (2012) Use of different alkaline pretreatments and enzyme models to improve low-cost cellulosic biomass conversion. Biomass Bioenergy 39:182–191CrossRef
25.
Zurück zum Zitat Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145CrossRef Ju X, Engelhard M, Zhang X (2013) An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol 132:137–145CrossRef
26.
Zurück zum Zitat Wu F-C, Wu J-Y, Liao Y-J, Wang M-Y, Shih I-L (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol 156:123–131CrossRef Wu F-C, Wu J-Y, Liao Y-J, Wang M-Y, Shih I-L (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol 156:123–131CrossRef
27.
Zurück zum Zitat Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76CrossRef Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76CrossRef
28.
Zurück zum Zitat Gupta A, Abraham RE, Barrow CJ, Puri M (2015) Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. Bioresour Technol 184:373–378CrossRef Gupta A, Abraham RE, Barrow CJ, Puri M (2015) Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. Bioresour Technol 184:373–378CrossRef
29.
Zurück zum Zitat Bakisgan C, Dumanli AG, Yurum Y (2009) Trace elements in Turkish biomass fuels: ashes of wheat straw, olive bagasse and hazelnut shell. Fuel 88:1842–1851CrossRef Bakisgan C, Dumanli AG, Yurum Y (2009) Trace elements in Turkish biomass fuels: ashes of wheat straw, olive bagasse and hazelnut shell. Fuel 88:1842–1851CrossRef
30.
Zurück zum Zitat Ramsurn H, Gupta RB (2012) Production of biocrude from biomass by acidic subcritical water followed by alkaline supercritical water two-step liquefaction. Energy Fuel 26:2365–2375CrossRef Ramsurn H, Gupta RB (2012) Production of biocrude from biomass by acidic subcritical water followed by alkaline supercritical water two-step liquefaction. Energy Fuel 26:2365–2375CrossRef
31.
Zurück zum Zitat Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stahli P, Kaestner A, Groso A, Stampanoni M (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159:46–55CrossRef Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stahli P, Kaestner A, Groso A, Stampanoni M (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159:46–55CrossRef
32.
Zurück zum Zitat Moxley G, Zhu Z, Zhang YHP (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56:7885–7890CrossRef Moxley G, Zhu Z, Zhang YHP (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J Agric Food Chem 56:7885–7890CrossRef
33.
Zurück zum Zitat Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275CrossRef Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275CrossRef
34.
Zurück zum Zitat Asadieraghi M, Wan Daud WMA (2014) Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manag 82:71–82CrossRef Asadieraghi M, Wan Daud WMA (2014) Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manag 82:71–82CrossRef
35.
Zurück zum Zitat Mutje P, Lopez A, Vallejos ME, Lopez JP, Vilaseca F (2007) Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Compos Part A 38:369–377CrossRef Mutje P, Lopez A, Vallejos ME, Lopez JP, Vilaseca F (2007) Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Compos Part A 38:369–377CrossRef
36.
Zurück zum Zitat Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodegr 52:151–160CrossRef Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodegr 52:151–160CrossRef
37.
Zurück zum Zitat Nelson ML, O'Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef Nelson ML, O'Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef
38.
Zurück zum Zitat Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A 39:1632–1637CrossRef Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A 39:1632–1637CrossRef
39.
Zurück zum Zitat Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46CrossRef Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46CrossRef
40.
Zurück zum Zitat Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753CrossRef Kumar R, Hu F, Sannigrahi P, Jung S, Ragauskas AJ, Wyman CE (2013) Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol Bioeng 110:737–753CrossRef
41.
Zurück zum Zitat Liu L, Sun J, Li M, Wang S, Pei H, Zhang J (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 100:5853–5858CrossRef Liu L, Sun J, Li M, Wang S, Pei H, Zhang J (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 100:5853–5858CrossRef
42.
Zurück zum Zitat Liao Z, Huang Z, Hu H, Zhang Y, Tan Y (2011) Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation. Bioresour Technol 102:7953–7958CrossRef Liao Z, Huang Z, Hu H, Zhang Y, Tan Y (2011) Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation. Bioresour Technol 102:7953–7958CrossRef
43.
Zurück zum Zitat Biswas AK, Umeki K, Yang W, Blasiak W (2011) Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Process Technol 92:1849–1854CrossRef Biswas AK, Umeki K, Yang W, Blasiak W (2011) Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Process Technol 92:1849–1854CrossRef
44.
Zurück zum Zitat Yao R, Hu H, Deng S, Wang H, Zhu H (2011) Structure and saccharification of rice straw pretreated with sulfur trioxide micro-thermal explosion collaborative dilutes alkali. Bioresour Technol 102:6340–6343CrossRef Yao R, Hu H, Deng S, Wang H, Zhu H (2011) Structure and saccharification of rice straw pretreated with sulfur trioxide micro-thermal explosion collaborative dilutes alkali. Bioresour Technol 102:6340–6343CrossRef
45.
Zurück zum Zitat Popescu C-M, Lisa G, Manoliu A, Gradinariu P, Vasile C (2010) Thermogravimetric analysis of fungus-degraded lime wood. Carbohydr Polym 80:78–83CrossRef Popescu C-M, Lisa G, Manoliu A, Gradinariu P, Vasile C (2010) Thermogravimetric analysis of fungus-degraded lime wood. Carbohydr Polym 80:78–83CrossRef
46.
Zurück zum Zitat Carrier M, Loppinet SA, Denux D, Lasnier JM, Ham PF, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307CrossRef Carrier M, Loppinet SA, Denux D, Lasnier JM, Ham PF, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35:298–307CrossRef
47.
Zurück zum Zitat Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102:6230–6238CrossRef Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102:6230–6238CrossRef
48.
Zurück zum Zitat Shin SJ, Cho NS (2008) Conversion factors for carbohydrate analysis by hydrolysis and 1H-NMR spectroscopy. Cellulose 15:255–260CrossRef Shin SJ, Cho NS (2008) Conversion factors for carbohydrate analysis by hydrolysis and 1H-NMR spectroscopy. Cellulose 15:255–260CrossRef
Metadaten
Titel
Understanding physicochemical changes in pretreated and enzyme hydrolysed hemp (Cannabis sativa) biomass for biorefinery development
verfasst von
Reinu E Abraham
Jitraporn Vongsvivut
Colin J Barrow
Munish Puri
Publikationsdatum
01.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2016
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-015-0168-4

Weitere Artikel der Ausgabe 2/2016

Biomass Conversion and Biorefinery 2/2016 Zur Ausgabe