Skip to main content
Erschienen in: Journal of Materials Science 24/2020

16.05.2020 | Ceramics

Universal dynamic response in polycrystals of advanced superionic conductors

verfasst von: Alexandra V. Andreeva, Alexandr L. Despotuli

Erschienen in: Journal of Materials Science | Ausgabe 24/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The work develops the material science of advanced superionic conductors (AdSICs). The AdSICs have been distinguished by the authors as a new class of solid-state ionic conductors due to the best ion-transport properties and their special crystal structure that is close to optimum for fast ion transport (FIT). Structure descriptors, a new geometry of 3D close packing of FIT tunnels inside the unit cell, and the distinctive properties of grain boundaries (GBs) in AdSICs have been revealed. On this structural basis and a recently developed theory of ion transport on a nanoscale (“structure-dynamic approach of nanoionics,” SDA), the absence of Jonsher’s universal dynamic response (UDR) in polycrystalline AdSICs has been explained. In solid-state ionic conductors, UDR holds in a frequency (ω) range depending on heights (η) and heights difference (Δη) of potential barriers which mobile ions overcome in a non-uniform crystal potential landscape. In polycrystalline AdSICs, η is not above 0.2 eV and Δη ≤ ~ 0.1 eV; therefore, the SDA indicates the response to external electric excitations has an ohmic character, i.e., does not depend on ω. The important role of processes of structural self-organization and the formation of low-energy coherent GBs in AdSICs is emphasized. It is concluded that a deeper understanding of the structure and properties of AdSICs can serve as a guide for searching and designing new materials/devices with FIT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sunandana CS (2015) Introduction to solid state ionics: phenomenology and applications. CRC Press, Boca RatonCrossRef Sunandana CS (2015) Introduction to solid state ionics: phenomenology and applications. CRC Press, Boca RatonCrossRef
2.
Zurück zum Zitat Zhirnov VV, Cavin RK (2008) Nanodevices: charge of the heavy brigade. Nat Nanotechnol 3:377–378CrossRef Zhirnov VV, Cavin RK (2008) Nanodevices: charge of the heavy brigade. Nat Nanotechnol 3:377–378CrossRef
3.
Zurück zum Zitat Frascaroli J, Brivio S, Covi E, Spiga S (2018) Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing. Sci Rep 8:7178CrossRef Frascaroli J, Brivio S, Covi E, Spiga S (2018) Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing. Sci Rep 8:7178CrossRef
4.
Zurück zum Zitat Wang Z, Wang L, Nagai M et al (2017) Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv Electron Mater 3:1600510CrossRef Wang Z, Wang L, Nagai M et al (2017) Nanoionics-enabled memristive devices: strategies and materials for neuromorphic applications. Adv Electron Mater 3:1600510CrossRef
5.
Zurück zum Zitat Despotuli AL, Nikolaichik VI (1993) A step towards nanoionics. Solid State Ionics 60:275–278CrossRef Despotuli AL, Nikolaichik VI (1993) A step towards nanoionics. Solid State Ionics 60:275–278CrossRef
7.
Zurück zum Zitat Despotuli AL, Andreeva AV (2010) Nanoionics: new materials and supercapacitors. Nanotechnol Russia 5:506–520CrossRef Despotuli AL, Andreeva AV (2010) Nanoionics: new materials and supercapacitors. Nanotechnol Russia 5:506–520CrossRef
8.
Zurück zum Zitat Andreeva AV, Despotuli AL (2005) Interface design in nanosystems of advanced superionic conductors. Ionics 11:152–160CrossRef Andreeva AV, Despotuli AL (2005) Interface design in nanosystems of advanced superionic conductors. Ionics 11:152–160CrossRef
9.
Zurück zum Zitat Despotuli AL, Andreeva AV, Rambabu B (2005) Nanoionics of advanced superionic conductors. Ionics 11:306–314CrossRef Despotuli AL, Andreeva AV, Rambabu B (2005) Nanoionics of advanced superionic conductors. Ionics 11:306–314CrossRef
10.
Zurück zum Zitat Despotuli AL, Andreeva AV (2020) Chapter 9. Structure-dynamic approach of nanoionics. In: Sattler KD (ed) 21th century nanoscience. A handbook. Exotic nanostructures and quantum systems, vol 5. CRC Press, Boca Raton, pp 9.1–9.19 Despotuli AL, Andreeva AV (2020) Chapter 9. Structure-dynamic approach of nanoionics. In: Sattler KD (ed) 21th century nanoscience. A handbook. Exotic nanostructures and quantum systems, vol 5. CRC Press, Boca Raton, pp 9.1–9.19
11.
Zurück zum Zitat Despotuli AL, Andreeva AV (2012) Model, method and formalism of new approach to ion transport processes description for the solid electrolyte/electronic conductor blocking hetero-junctions. Nano Microsyst Tech 9:16–21 (Russian) Despotuli AL, Andreeva AV (2012) Model, method and formalism of new approach to ion transport processes description for the solid electrolyte/electronic conductor blocking hetero-junctions. Nano Microsyst Tech 9:16–21 (Russian)
12.
Zurück zum Zitat Despotuli AL, Andreeva AV (2013) Maxwell displacement current in nanoionics and intrinsic ion transport properties of model nanostructures. Nano Microsyst Tech 8:2–9 (Russian) Despotuli AL, Andreeva AV (2013) Maxwell displacement current in nanoionics and intrinsic ion transport properties of model nanostructures. Nano Microsyst Tech 8:2–9 (Russian)
13.
Zurück zum Zitat Despotuli AL, Andreeva AV (2015) Maxwell displacement current and nature of Jonsher’s dynamic response in nanoionics. Ionics 21:459–469CrossRef Despotuli AL, Andreeva AV (2015) Maxwell displacement current and nature of Jonsher’s dynamic response in nanoionics. Ionics 21:459–469CrossRef
14.
Zurück zum Zitat Despotuli AL, Andreeva AV (2016) Method of uniform effective field in structure-dynamic approach of nanoionics. Ionics 22:1291–1298CrossRef Despotuli AL, Andreeva AV (2016) Method of uniform effective field in structure-dynamic approach of nanoionics. Ionics 22:1291–1298CrossRef
15.
Zurück zum Zitat Despotuli AL, Andreeva AV (2017) Dimensional factors and non-linear processes in structure-dynamic approach of nanoionics. Nano and Microsystem Technique (Russian) 19:338–352 Despotuli AL, Andreeva AV (2017) Dimensional factors and non-linear processes in structure-dynamic approach of nanoionics. Nano and Microsystem Technique (Russian) 19:338–352
16.
Zurück zum Zitat Despotuli AL, Andreeva AV (2018) Dimensional factor and reciprocity theorem in structure-dynamic approach of nanoionics. Ionics 24:237–241CrossRef Despotuli AL, Andreeva AV (2018) Dimensional factor and reciprocity theorem in structure-dynamic approach of nanoionics. Ionics 24:237–241CrossRef
17.
Zurück zum Zitat Despotuli AL, Andreeva AV (2018) Spatial averaging of electrostatic potential differences in layered nanostructures with ionic hopping conductivity. J Eleciroanal Chem 829:1–6CrossRef Despotuli AL, Andreeva AV (2018) Spatial averaging of electrostatic potential differences in layered nanostructures with ionic hopping conductivity. J Eleciroanal Chem 829:1–6CrossRef
21.
Zurück zum Zitat Bindi L, Evain M, Pradel A, Albert S, Ribes M, Menchetti S (2006) Fast ion conduction character and ionic phase-transitions in disordered crystals: the complex case of the minerals of the pearceite-polybasite group. Phys Chem Miner 33:677–690CrossRef Bindi L, Evain M, Pradel A, Albert S, Ribes M, Menchetti S (2006) Fast ion conduction character and ionic phase-transitions in disordered crystals: the complex case of the minerals of the pearceite-polybasite group. Phys Chem Miner 33:677–690CrossRef
22.
Zurück zum Zitat Flygare WH, Huggins RA (1973) Theory of ionic transport in crystallographic tunnels. J Phys Chem Solids 34:1199–1204CrossRef Flygare WH, Huggins RA (1973) Theory of ionic transport in crystallographic tunnels. J Phys Chem Solids 34:1199–1204CrossRef
23.
Zurück zum Zitat Alekperov O, Samedov O, Pauncar R et al (2015) Impedance spectroscopy study of phase transitions to ionic and superionic conductivity states in Ag2S and Ag2Se. Phys Stat Sol C 12:610–614 Alekperov O, Samedov O, Pauncar R et al (2015) Impedance spectroscopy study of phase transitions to ionic and superionic conductivity states in Ag2S and Ag2Se. Phys Stat Sol C 12:610–614
24.
Zurück zum Zitat Geller S (1967) Crystal structure of the solid electrolyte RbAg4I. Science 157:310–312CrossRef Geller S (1967) Crystal structure of the solid electrolyte RbAg4I. Science 157:310–312CrossRef
25.
Zurück zum Zitat Jonscher AK (1977) The “universal” dielectric response. Nature 267:673–679CrossRef Jonscher AK (1977) The “universal” dielectric response. Nature 267:673–679CrossRef
26.
Zurück zum Zitat Rhimi T, Leroy G, Duponchel B et al (2018) Electrical conductivity and dielectric analysis of NaH2PO4compound. Ionics 24:3507–3514CrossRef Rhimi T, Leroy G, Duponchel B et al (2018) Electrical conductivity and dielectric analysis of NaH2PO4compound. Ionics 24:3507–3514CrossRef
27.
Zurück zum Zitat Funke K (1991) Is there a “universal” explanation for the “universal” dynamic response? Ber Bunsenges Phys Chem 95:955–964CrossRef Funke K (1991) Is there a “universal” explanation for the “universal” dynamic response? Ber Bunsenges Phys Chem 95:955–964CrossRef
28.
Zurück zum Zitat Funke K, Bruuckner S, Cramer C, Wilmer D (2002) Dynamics of mobile ions in solid electrolytes – conductivity spectra and the concept of mismatch and relaxation. J Non-Cryst Solids 307–310:921–929CrossRef Funke K, Bruuckner S, Cramer C, Wilmer D (2002) Dynamics of mobile ions in solid electrolytes – conductivity spectra and the concept of mismatch and relaxation. J Non-Cryst Solids 307–310:921–929CrossRef
29.
Zurück zum Zitat Funke K (1978) AgI-type electrolytes. Prog Solid State Chem 11:345–402CrossRef Funke K (1978) AgI-type electrolytes. Prog Solid State Chem 11:345–402CrossRef
30.
Zurück zum Zitat Gebhardt KF, Soper PD, Merski J, Balle TJ, Flygare WH (1980) Conductivity of α-silver iodide in the microwave range. J Chem Phys 73:272–276CrossRef Gebhardt KF, Soper PD, Merski J, Balle TJ, Flygare WH (1980) Conductivity of α-silver iodide in the microwave range. J Chem Phys 73:272–276CrossRef
31.
Zurück zum Zitat Li J, Shan Z, Ma E (2014) Elastic strain engineering for unprecedented materials properties. MRS Bull 39(02):108–114CrossRef Li J, Shan Z, Ma E (2014) Elastic strain engineering for unprecedented materials properties. MRS Bull 39(02):108–114CrossRef
32.
Zurück zum Zitat Lee S, Zhang W, Khatkhatay F, Jia Q (2015) Strain tuning and strong enhancement of ionic conductivity in SrZrO3-RE2O3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films. Adv Funct Mater 25:4328–4333CrossRef Lee S, Zhang W, Khatkhatay F, Jia Q (2015) Strain tuning and strong enhancement of ionic conductivity in SrZrO3-RE2O3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films. Adv Funct Mater 25:4328–4333CrossRef
33.
Zurück zum Zitat Korte C, Keppner J, Peters A, Schichtel N, Aydin H, Janek J (2014) Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes—an improved model for nanocrystalline thin films and a review of experimental data. Phys Chem Chem Phys 16:24575–24591CrossRef Korte C, Keppner J, Peters A, Schichtel N, Aydin H, Janek J (2014) Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes—an improved model for nanocrystalline thin films and a review of experimental data. Phys Chem Chem Phys 16:24575–24591CrossRef
34.
Zurück zum Zitat Roitburd AL (1972) Relaxation of internal stresses in heterophase systems and phase nucleation in solids. JETP Lett 15:423–426 (Russian) Roitburd AL (1972) Relaxation of internal stresses in heterophase systems and phase nucleation in solids. JETP Lett 15:423–426 (Russian)
35.
Zurück zum Zitat Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14:1026–1031CrossRef Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14:1026–1031CrossRef
36.
Zurück zum Zitat Wang Y, Richards WD, Bo S-H, Miara L, Ceser G (2017) Computational prediction and evaluation of solid-state sodium superionic conductors. Chem Mater 29:7475–7482CrossRef Wang Y, Richards WD, Bo S-H, Miara L, Ceser G (2017) Computational prediction and evaluation of solid-state sodium superionic conductors. Chem Mater 29:7475–7482CrossRef
37.
Zurück zum Zitat Ma C, Cheng Y, Chen K, Li J, Sumpter BG, Nan C-W, More KL, Dudney NJ, Chi M (2016) Mesoscopic framework enables facile ionic transport in solid electrolytes for Li-ion batteries. Adv Energy Mater 6:1600053CrossRef Ma C, Cheng Y, Chen K, Li J, Sumpter BG, Nan C-W, More KL, Dudney NJ, Chi M (2016) Mesoscopic framework enables facile ionic transport in solid electrolytes for Li-ion batteries. Adv Energy Mater 6:1600053CrossRef
38.
Zurück zum Zitat Andreeva AV (2005) Interface design and processes of self-organization in nanosystems. J Guangdong Non-Ferrous Metals 2–3:244–250 Andreeva AV (2005) Interface design and processes of self-organization in nanosystems. J Guangdong Non-Ferrous Metals 2–3:244–250
40.
Zurück zum Zitat Lord EA, Mackay AL, Ranganathan S (2006) New geometries for new materials. University Press, Cambridge Lord EA, Mackay AL, Ranganathan S (2006) New geometries for new materials. University Press, Cambridge
Metadaten
Titel
Universal dynamic response in polycrystals of advanced superionic conductors
verfasst von
Alexandra V. Andreeva
Alexandr L. Despotuli
Publikationsdatum
16.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04790-5

Weitere Artikel der Ausgabe 24/2020

Journal of Materials Science 24/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.