Skip to main content

2019 | OriginalPaper | Buchkapitel

Using a BCI Prosthetic Hand to Control Phantom Limb Pain

verfasst von : Takufumi Yanagisawa, Ryohei Fukuma, Ben Seymour, Koichi Hosomi, Haruhiko Kishima, Takeshi Shimizu, Hiroshi Yokoi, Masayuki Hirata, Toshiki Yoshimine, Yukiyasu Kamitani, Youichi Saitoh

Erschienen in: Brain-Computer Interface Research

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Phantom limb pain is neuropathic pain that occurs after the amputation of a limb and partial or complete deafferentation. The underlying cause has been attributed to maladaptive plasticity of the sensorimotor cortex, and evidence suggests that experimental induction of further reorganization should affect the pain. Here, we use a brain–computer interface (BCI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BCI training successfully induced some plastic alteration in the sensorimotor representation of the phantom hand movements. If a patient tried to control the robotic hand by associating the representation of phantom hand movement, it increased the pain while improving classification accuracy of the phantom hand movements. However, if the patient tried to control the robotic hand by associating the representation of the intact hand, it decreased the pain while decreasing the classification accuracy of the phantom hand movements. These results demonstrate that the BCI training controls the phantom limb pain depending on the induced sensorimotor plasticity. Moreover, these results strongly suggest that a reorganization of the sensorimotor cortex is the underlying cause of phantom limb pain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Wolff et al., 21. Phantom pain. Pain Pract 11(4), 403–413 (2011)CrossRef A. Wolff et al., 21. Phantom pain. Pain Pract 11(4), 403–413 (2011)CrossRef
2.
Zurück zum Zitat H. Shankar, J. Hansen, K. Thomas, Phantom pain in a patient with brachial plexus avulsion injury. Pain Med. 16(4), 777–781 (2015)CrossRef H. Shankar, J. Hansen, K. Thomas, Phantom pain in a patient with brachial plexus avulsion injury. Pain Med. 16(4), 777–781 (2015)CrossRef
3.
Zurück zum Zitat H. Flor, L. Nikolajsen, T. Staehelin Jensen, Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 7(11), 873–881 (2006)CrossRef H. Flor, L. Nikolajsen, T. Staehelin Jensen, Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 7(11), 873–881 (2006)CrossRef
4.
Zurück zum Zitat H. Flor, N. Birbaumer, Phantom limb pain: cortical plasticity and novel therapeutic approaches. Curr. Opin. Anaesthesiol. 13(5), 561–564 (2000)CrossRef H. Flor, N. Birbaumer, Phantom limb pain: cortical plasticity and novel therapeutic approaches. Curr. Opin. Anaesthesiol. 13(5), 561–564 (2000)CrossRef
5.
Zurück zum Zitat V.S. Ramachandran, D. Rogers-Ramachandran, S. Cobb, Touching the phantom limb. Nature 377(6549), 489–490 (1995)CrossRef V.S. Ramachandran, D. Rogers-Ramachandran, S. Cobb, Touching the phantom limb. Nature 377(6549), 489–490 (1995)CrossRef
6.
Zurück zum Zitat H. Flor et al., Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531), 482–484 (1995)CrossRef H. Flor et al., Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531), 482–484 (1995)CrossRef
7.
Zurück zum Zitat M. Lotze et al., Phantom movements and pain: an fMRI study in upper limb amputees. Brain 124(11), 2268–2277 (2001)CrossRef M. Lotze et al., Phantom movements and pain: an fMRI study in upper limb amputees. Brain 124(11), 2268–2277 (2001)CrossRef
8.
Zurück zum Zitat A. Karl et al., Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J. Neurosci. 21(10), 3609–3618 (2001)CrossRef A. Karl et al., Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J. Neurosci. 21(10), 3609–3618 (2001)CrossRef
9.
Zurück zum Zitat T.R. Makin et al., Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 138(8), 2140–2146 (2015)CrossRef T.R. Makin et al., Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 138(8), 2140–2146 (2015)CrossRef
10.
Zurück zum Zitat T.R. Makin et al., Phantom pain is associated with preserved structure and function in the former hand area. Nat. Commun. 4, 1570 (2013)CrossRef T.R. Makin et al., Phantom pain is associated with preserved structure and function in the former hand area. Nat. Commun. 4, 1570 (2013)CrossRef
11.
Zurück zum Zitat A.L. Orsborn et al., Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82(6), 1380–1393 (2014)CrossRef A.L. Orsborn et al., Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82(6), 1380–1393 (2014)CrossRef
12.
Zurück zum Zitat K. Ganguly et al., Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat. Neurosci. 14(5), 662–667 (2011)CrossRef K. Ganguly et al., Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat. Neurosci. 14(5), 662–667 (2011)CrossRef
13.
Zurück zum Zitat J.D. Wander et al., Distributed cortical adaptation during learning of a brain-computer interface task. Proc. Natl. Acad. Sci. U.S.A. 110(26), 10818–10823 (2013)CrossRef J.D. Wander et al., Distributed cortical adaptation during learning of a brain-computer interface task. Proc. Natl. Acad. Sci. U.S.A. 110(26), 10818–10823 (2013)CrossRef
14.
Zurück zum Zitat Y. Nakanishi et al., Decoding fingertip trajectory from electrocorticographic signals in humans. Neurosci. Res. 85, 20–27 (2014)CrossRef Y. Nakanishi et al., Decoding fingertip trajectory from electrocorticographic signals in humans. Neurosci. Res. 85, 20–27 (2014)CrossRef
15.
Zurück zum Zitat Y. Nakanishi et al., Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. PLoS ONE 8(8), e72085 (2013)CrossRef Y. Nakanishi et al., Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. PLoS ONE 8(8), e72085 (2013)CrossRef
16.
Zurück zum Zitat T. Yanagisawa et al., Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann. Neurol. 71(3), 353–361 (2012)CrossRef T. Yanagisawa et al., Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann. Neurol. 71(3), 353–361 (2012)CrossRef
17.
Zurück zum Zitat T. Yanagisawa et al., Real-time control of a prosthetic hand using human electrocorticography signals. J. Neurosurg. 114(6), 1715–1722 (2011)CrossRef T. Yanagisawa et al., Real-time control of a prosthetic hand using human electrocorticography signals. J. Neurosurg. 114(6), 1715–1722 (2011)CrossRef
18.
Zurück zum Zitat T. Yanagisawa et al., Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage 45(4), 1099–1106 (2009)CrossRef T. Yanagisawa et al., Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage 45(4), 1099–1106 (2009)CrossRef
19.
Zurück zum Zitat T. Yanagisawa et al., Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J. Neurosci. 32(44), 15467–15475 (2012)CrossRef T. Yanagisawa et al., Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J. Neurosci. 32(44), 15467–15475 (2012)CrossRef
20.
Zurück zum Zitat T. Yanagisawa et al., Movement induces suppression of interictal spikes in sensorimotor neocortical epilepsy. Epilepsy Res. 87(1), 12–17 (2009)CrossRef T. Yanagisawa et al., Movement induces suppression of interictal spikes in sensorimotor neocortical epilepsy. Epilepsy Res. 87(1), 12–17 (2009)CrossRef
21.
Zurück zum Zitat R. Fukuma et al., Closed-loop control of a neuroprosthetic hand by magnetoencephalographic signals. PLoS ONE 10(7), e0131547 (2015)CrossRef R. Fukuma et al., Closed-loop control of a neuroprosthetic hand by magnetoencephalographic signals. PLoS ONE 10(7), e0131547 (2015)CrossRef
22.
Zurück zum Zitat A. Toda et al., Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse Bayesian methods. NeuroImage 54(2), 892–905 (2011)CrossRef A. Toda et al., Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse Bayesian methods. NeuroImage 54(2), 892–905 (2011)CrossRef
23.
Zurück zum Zitat E. Buch et al., Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3), 910–917 (2008)CrossRef E. Buch et al., Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3), 910–917 (2008)CrossRef
24.
Zurück zum Zitat R. Fukuma et al., Real-time control of a neuroprosthetic hand by magnetoencephalographic signals from paralysed patients. Sci. Rep. 6, 21781 (2016)CrossRef R. Fukuma et al., Real-time control of a neuroprosthetic hand by magnetoencephalographic signals from paralysed patients. Sci. Rep. 6, 21781 (2016)CrossRef
25.
Zurück zum Zitat Y. Nishimura et al., Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80(5), 1301–1309 (2013)CrossRef Y. Nishimura et al., Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80(5), 1301–1309 (2013)CrossRef
26.
Zurück zum Zitat K.B. Clancy et al., Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17(6), 807–809 (2014)CrossRef K.B. Clancy et al., Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17(6), 807–809 (2014)CrossRef
27.
Zurück zum Zitat E.R. Buch et al., Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(2), 596–614 (2012)CrossRef E.R. Buch et al., Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(2), 596–614 (2012)CrossRef
28.
Zurück zum Zitat T. Yanagisawa et al., Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nat. Commun. 7, 13209 (2016)CrossRef T. Yanagisawa et al., Induced sensorimotor brain plasticity controls pain in phantom limb patients. Nat. Commun. 7, 13209 (2016)CrossRef
29.
Zurück zum Zitat A.M. Dale, B. Fischl, M.I. Sereno, Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9(2), 179–194 (1999)CrossRef A.M. Dale, B. Fischl, M.I. Sereno, Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9(2), 179–194 (1999)CrossRef
30.
Zurück zum Zitat L.G. Cohen et al., Motor reorganization after upper limb amputation in man: a study with focal magnetic stimulation. Brain 114(1B), 615–627 (1991)CrossRef L.G. Cohen et al., Motor reorganization after upper limb amputation in man: a study with focal magnetic stimulation. Brain 114(1B), 615–627 (1991)CrossRef
31.
Zurück zum Zitat T. Yoshioka et al., Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals. Neuroimage 42(4), 1397–1413 (2008)CrossRef T. Yoshioka et al., Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals. Neuroimage 42(4), 1397–1413 (2008)CrossRef
32.
Zurück zum Zitat K. Shibata et al., Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061), 1413–1415 (2011)CrossRef K. Shibata et al., Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061), 1413–1415 (2011)CrossRef
33.
Zurück zum Zitat M.N. Baliki, A.V. Apkarian, Nociception, pain, negative moods, and behavior selection. Neuron 87(3), 474–491 (2015)CrossRef M.N. Baliki, A.V. Apkarian, Nociception, pain, negative moods, and behavior selection. Neuron 87(3), 474–491 (2015)CrossRef
34.
Zurück zum Zitat R. Kuner, H. Flor, Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18(1), 20–30 (2016)CrossRef R. Kuner, H. Flor, Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18(1), 20–30 (2016)CrossRef
35.
Zurück zum Zitat T.D. Wager et al., An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368(15), 1388–1397 (2013)CrossRef T.D. Wager et al., An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368(15), 1388–1397 (2013)CrossRef
36.
Zurück zum Zitat S. Raspopovic et al., Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014)CrossRef S. Raspopovic et al., Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6(222), 222ra19 (2014)CrossRef
Metadaten
Titel
Using a BCI Prosthetic Hand to Control Phantom Limb Pain
verfasst von
Takufumi Yanagisawa
Ryohei Fukuma
Ben Seymour
Koichi Hosomi
Haruhiko Kishima
Takeshi Shimizu
Hiroshi Yokoi
Masayuki Hirata
Toshiki Yoshimine
Yukiyasu Kamitani
Youichi Saitoh
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05668-1_4

Neuer Inhalt