Skip to main content
Erschienen in: Data Mining and Knowledge Discovery 5/2018

04.07.2018

Using core-periphery structure to predict high centrality nodes in time-varying networks

verfasst von: Soumya Sarkar, Sandipan Sikdar, Sanjukta Bhowmick, Animesh Mukherjee

Erschienen in: Data Mining and Knowledge Discovery | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vertices with high betweenness and closeness centrality represent influential entities in a network. An important problem for time varying networks is to know a-priori, using minimal computation, whether the influential vertices of the current time step will retain their high centrality, in the future time steps, as the network evolves. In this paper, based on empirical evidences from several large real world time varying networks, we discover a certain class of networks where the highly central vertices are part of the innermost core of the network and this property is maintained over time. As a key contribution of this work, we propose novel heuristics to identify these networks in an optimal fashion and also develop a two-step algorithm for predicting high centrality vertices. Consequently, we show for the first time that for such networks, expensive shortest path computations in each time step as the network changes can be completely avoided; instead we can use time series models (e.g., ARIMA as used here) to predict the overlap between the high centrality vertices in the current time step to the ones in the future time steps. Moreover, once the new network is available in time, we can find the high centrality vertices in the top core simply based on their high degree. To measure the effectiveness of our framework, we perform prediction task on a large set of diverse time-varying networks. We obtain F1-scores as high as 0.81 and 0.72 in predicting the top m closeness and betweenness centrality vertices respectively for real networks where the highly central vertices mostly reside in the innermost core. For synthetic networks that conform to this property we achieve F1-scores of 0.94 and 0.92 for closeness and betweenness respectively. We validate our results by showing that the practical effects of our predicted vertices match the effects of the actual high centrality vertices. Finally, we also provide a formal sketch demonstrating why our method works.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper, when we mention highly central vertices, we specifically refer to high closeness or betweenness centrality and not other types of centralities.
 
2
We tried with other stretches of size 15, 25 etc. The results do not seem to be affected by such minor variations. Ideally this size should not be too large thus consuming a lot of data for prediction, nor it should be too small thus having too few points to correctly predict. Through experimentation, we find that a size close to 20 strikes an ideal balance.
 
3
Note that if we keep increasing the number of top vertices, the prediction results can only get better. Through experiments, we observe that small numbers like 5 and 10 are judicial choices.
 
Literatur
Zurück zum Zitat Agneessens F, Borgatti SP, Everett MG (2017) Geodesic based centrality: unifying the local and the global. Soc Netw 49:12–26CrossRef Agneessens F, Borgatti SP, Everett MG (2017) Geodesic based centrality: unifying the local and the global. Soc Netw 49:12–26CrossRef
Zurück zum Zitat Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2006) Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in neural information processing systems (NIPS), pp 41–50 Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2006) Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in neural information processing systems (NIPS), pp 41–50
Zurück zum Zitat Baeza-Yates R, Ribeiro-Neto B et al (1999) Modern information retrieval, vol 463. ACM Press, New York Baeza-Yates R, Ribeiro-Neto B et al (1999) Modern information retrieval, vol 463. ACM Press, New York
Zurück zum Zitat Barucca P, Tantari D, Lillo F (2016) Centrality metrics and localization in core-periphery networks. J Stat Mech Theory Exp 2016(2):023401MathSciNetCrossRef Barucca P, Tantari D, Lillo F (2016) Centrality metrics and localization in core-periphery networks. J Stat Mech Theory Exp 2016(2):023401MathSciNetCrossRef
Zurück zum Zitat Benyahia O, Largeron C, Jeudy B, Zaïane OR (2016) Dancer: dynamic attributed network with community structure generator. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 41–44 Benyahia O, Largeron C, Jeudy B, Zaïane OR (2016) Dancer: dynamic attributed network with community structure generator. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 41–44
Zurück zum Zitat Borgatti SP, Carley KM, Krackhardt D (2006) On the robustness of centrality measures under conditions of imperfect data. Soc Netw 28(2):124–136CrossRef Borgatti SP, Carley KM, Krackhardt D (2006) On the robustness of centrality measures under conditions of imperfect data. Soc Netw 28(2):124–136CrossRef
Zurück zum Zitat Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley, HobokenMATH Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. Wiley, HobokenMATH
Zurück zum Zitat Braha D, Bar-Yam Y (2006) From centrality to temporary fame: dynamic centrality in complex networks. Complexity 12(2):59–63CrossRef Braha D, Bar-Yam Y (2006) From centrality to temporary fame: dynamic centrality in complex networks. Complexity 12(2):59–63CrossRef
Zurück zum Zitat Braha D, Bar-Yam Y (2009) Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Gross T, Sayama H (eds) Adaptive networks: theory, models and applications. Springer studies on complexity. Springer, Berlin, pp 39–50CrossRef Braha D, Bar-Yam Y (2009) Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Gross T, Sayama H (eds) Adaptive networks: theory, models and applications. Springer studies on complexity. Springer, Berlin, pp 39–50CrossRef
Zurück zum Zitat Carnes T, Nagarajan C, Wild SM, Van Zuylen A (2007) Maximizing influence in a competitive social network: a follower’s perspective. In: Proceedings of the 9th international conference on electronic commerce. ACM, pp 351–360 Carnes T, Nagarajan C, Wild SM, Van Zuylen A (2007) Maximizing influence in a competitive social network: a follower’s perspective. In: Proceedings of the 9th international conference on electronic commerce. ACM, pp 351–360
Zurück zum Zitat Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239CrossRef
Zurück zum Zitat Govindan P, Soundarajan S, Eliassi-Rad T, Faloutsos C (2016) Nimblecore: a space-efficient external memory algorithm for estimating core numbers. In: IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), 2016. IEEE, pp 207–214 Govindan P, Soundarajan S, Eliassi-Rad T, Faloutsos C (2016) Nimblecore: a space-efficient external memory algorithm for estimating core numbers. In: IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), 2016. IEEE, pp 207–214
Zurück zum Zitat Gutfraind A, Safro I, Meyers LA (2015) Multiscale network generation. In: 18th international conference on information fusion (FUSION), 2015. IEEE, pp 158–165 Gutfraind A, Safro I, Meyers LA (2015) Multiscale network generation. In: 18th international conference on information fusion (FUSION), 2015. IEEE, pp 158–165
Zurück zum Zitat Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357–384MathSciNetCrossRefMATH Hamilton JD (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357–384MathSciNetCrossRefMATH
Zurück zum Zitat Hempel S, Koseska A, Kurths J, Nikoloski Z (2011) Inner composition alignment for inferring directed networks from short time series. Phys Rev Lett 107(5):054101CrossRef Hempel S, Koseska A, Kurths J, Nikoloski Z (2011) Inner composition alignment for inferring directed networks from short time series. Phys Rev Lett 107(5):054101CrossRef
Zurück zum Zitat Hill SA, Braha D (2010) Dynamic model of time-dependent complex networks. Phys Rev E 82(4):046105CrossRef Hill SA, Braha D (2010) Dynamic model of time-dependent complex networks. Phys Rev E 82(4):046105CrossRef
Zurück zum Zitat Holme P (2015) Modern temporal network theory: a colloquium. Euro Phys J B 88(9):1–30CrossRef Holme P (2015) Modern temporal network theory: a colloquium. Euro Phys J B 88(9):1–30CrossRef
Zurück zum Zitat Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125CrossRef Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125CrossRef
Zurück zum Zitat Khaouid W, Barsky M, Srinivasan V, Thomo A (2015) K-core decomposition of large networks on a single PC. Proc VLDB Endow 9(1):13–23CrossRef Khaouid W, Barsky M, Srinivasan V, Thomo A (2015) K-core decomposition of large networks on a single PC. Proc VLDB Endow 9(1):13–23CrossRef
Zurück zum Zitat Kim H, Anderson R (2012) Temporal node centrality in complex networks. Phys Rev E 85(2):026107CrossRef Kim H, Anderson R (2012) Temporal node centrality in complex networks. Phys Rev E 85(2):026107CrossRef
Zurück zum Zitat Kim H, Tang J, Anderson R, Mascolo C (2012) Centrality prediction in dynamic human contact networks. Comput Netw 56(3):983–996CrossRef Kim H, Tang J, Anderson R, Mascolo C (2012) Centrality prediction in dynamic human contact networks. Comput Netw 56(3):983–996CrossRef
Zurück zum Zitat Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRef
Zurück zum Zitat Kunegis J (2013) Konect: the Koblenz network collection. In: Proceedings of the 22nd international conference on world wide web (WWW). ACM, pp 1343–1350 Kunegis J (2013) Konect: the Koblenz network collection. In: Proceedings of the 22nd international conference on world wide web (WWW). ACM, pp 1343–1350
Zurück zum Zitat Lerman K, Ghosh R, Kang JH (2010) Centrality metric for dynamic networks. In: Proceedings of the 8th workshop on mining and learning with graphs. ACM, pp 70–77 Lerman K, Ghosh R, Kang JH (2010) Centrality metric for dynamic networks. In: Proceedings of the 8th workshop on mining and learning with graphs. ACM, pp 70–77
Zurück zum Zitat Liu HL, Ma C, Xiang BB, Tang M, Zhang HF (2018) Identifying multiple influential spreaders based on generalized closeness centrality. Phys A 492:2237–2248CrossRef Liu HL, Ma C, Xiang BB, Tang M, Zhang HF (2018) Identifying multiple influential spreaders based on generalized closeness centrality. Phys A 492:2237–2248CrossRef
Zurück zum Zitat Morselli C, Masias VH, Crespo F, Laengle S (2013) Predicting sentencing outcomes with centrality measures. Secur Inf 2(1):4CrossRef Morselli C, Masias VH, Crespo F, Laengle S (2013) Predicting sentencing outcomes with centrality measures. Secur Inf 2(1):4CrossRef
Zurück zum Zitat Nicosia V, Tang J, Mascolo C, Musolesi M, Russo G, Latora V (2013) Graph metrics for temporal networks. In: Holme P, Saramäki J (eds) Temporal networks, understanding complex systems. Springer, Berlin, pp 15–40 Nicosia V, Tang J, Mascolo C, Musolesi M, Russo G, Latora V (2013) Graph metrics for temporal networks. In: Holme P, Saramäki J (eds) Temporal networks, understanding complex systems. Springer, Berlin, pp 15–40
Zurück zum Zitat OBrien MP, Sullivan BD (2014) Locally estimating core numbers. In: IEEE international conference on data mining (ICDM), 2014. IEEE, pp 460–469 OBrien MP, Sullivan BD (2014) Locally estimating core numbers. In: IEEE international conference on data mining (ICDM), 2014. IEEE, pp 460–469
Zurück zum Zitat Rozenshtein P, Gionis A (2016) Temporal pagerank. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 674–689 Rozenshtein P, Gionis A (2016) Temporal pagerank. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 674–689
Zurück zum Zitat Scherrer A, Borgnat P, Fleury E, Guillaume JL, Robardet C (2008) Description and simulation of dynamic mobility networks. Comput Netw 52(15):2842–2858CrossRefMATH Scherrer A, Borgnat P, Fleury E, Guillaume JL, Robardet C (2008) Description and simulation of dynamic mobility networks. Comput Netw 52(15):2842–2858CrossRefMATH
Zurück zum Zitat Sikdar S, Ganguly N, Mukherjee A (2016) Time series analysis of temporal networks. Euro Phys J B 89(1):1–11CrossRef Sikdar S, Ganguly N, Mukherjee A (2016) Time series analysis of temporal networks. Euro Phys J B 89(1):1–11CrossRef
Zurück zum Zitat Taylor D, Myers SA, Clauset A, Porter MA, Mucha PJ (2015) Eigenvector-based centrality measures for temporal networks. arXiv preprint arXiv:1507.01266 Taylor D, Myers SA, Clauset A, Porter MA, Mucha PJ (2015) Eigenvector-based centrality measures for temporal networks. arXiv preprint arXiv:​1507.​01266
Zurück zum Zitat Ufimtsev V, Sarkar S, Mukherjee A, Bhowmick S (2016) Understanding stability of noisy networks through centrality measures and local connections. In: Proceedings of the 25th ACM international on conference on information and knowledge management (CIKM). ACM, pp 2347–2352 Ufimtsev V, Sarkar S, Mukherjee A, Bhowmick S (2016) Understanding stability of noisy networks through centrality measures and local connections. In: Proceedings of the 25th ACM international on conference on information and knowledge management (CIKM). ACM, pp 2347–2352
Zurück zum Zitat Yang Y, Dong Y, Chawla NV (2014) Predicting node degree centrality with the node prominence profile. Sci Rep 4:7236CrossRef Yang Y, Dong Y, Chawla NV (2014) Predicting node degree centrality with the node prominence profile. Sci Rep 4:7236CrossRef
Zurück zum Zitat Zhou H, Xu S, Huang C (2015) Temporal centrality prediction in opportunistic mobile social networks. In: International conference on internet of vehicles. Springer, pp 68–77 Zhou H, Xu S, Huang C (2015) Temporal centrality prediction in opportunistic mobile social networks. In: International conference on internet of vehicles. Springer, pp 68–77
Zurück zum Zitat Zhou H, Leung VC, Zhu C, Xu S, Fan J (2017) Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Trans Veh Technol 66(11):10372–10383CrossRef Zhou H, Leung VC, Zhu C, Xu S, Fan J (2017) Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Trans Veh Technol 66(11):10372–10383CrossRef
Metadaten
Titel
Using core-periphery structure to predict high centrality nodes in time-varying networks
verfasst von
Soumya Sarkar
Sandipan Sikdar
Sanjukta Bhowmick
Animesh Mukherjee
Publikationsdatum
04.07.2018
Verlag
Springer US
Erschienen in
Data Mining and Knowledge Discovery / Ausgabe 5/2018
Print ISSN: 1384-5810
Elektronische ISSN: 1573-756X
DOI
https://doi.org/10.1007/s10618-018-0574-x

Weitere Artikel der Ausgabe 5/2018

Data Mining and Knowledge Discovery 5/2018 Zur Ausgabe