Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 5/2021

07.11.2019 | Original Article

Utilization of oil palm fronds for bio-oil and bio-char production using hydrothermal liquefaction technology

verfasst von: Ankit Jadhav, Israr Ahmed, A. G Baloch, Harshit Jadhav, Sabzoi Nizamuddin, M. T. H. Siddiqui, Humair Ahmed Baloch, Sundus Saeed Qureshi, Nabisab Mujawar Mubarak

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrothermal liquefaction technology carried out on local Malaysian oil palm fronds (OPF) in a batch autoclave reactor to produce solid bio-char as well as liquid bio-oil is reported in this study. The parameters taken in consideration for study encapsulated variable reaction temperature (160–260 °C) and reaction times (20–100 min). Observations showed that the bio-oil yield percentage increased from 27.3% at 160 °C to 41.9% at 260 °C, whereas bio-char yield percentage decreased from 65.2% at 160 °C to 43.2% at 260 °C. Similarly, higher reaction time also produces higher yield bio-oil percentage and lower bio-char yield percentage. The characterization results showed that the combustion properties of bio-char and bio-oil were improved after hydrothermal liquefaction due to decrease in percentage of oxygen of bio-oil and bio-char and an increase in percentage of carbon content. The carbon percentage increased from 42.73% for OPF to 59.42% and 60.47% for bio-char and bio-oil, respectively. Whereas, the percentage of oxygen decreased from 52.51 for OPF to 36.30% and 35.61 for bio-char and bio-oil. The main chemical compounds identified in bio-oil by GC-MS were phenolic compounds and their derivatives, alcohols, ketones, and esters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abnisa F, Daud WW, Sahu J (2011) Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass Bioenergy 35(8):3604–3616CrossRef Abnisa F, Daud WW, Sahu J (2011) Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass Bioenergy 35(8):3604–3616CrossRef
2.
Zurück zum Zitat Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33(24):2205–2213CrossRef Agustin MB, Ahmmad B, Alonzo SMM, Patriana FM (2014) Bioplastic based on starch and cellulose nanocrystals from rice straw. J Reinf Plast Compos 33(24):2205–2213CrossRef
3.
Zurück zum Zitat Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16(7):5101–5109CrossRef Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16(7):5101–5109CrossRef
4.
Zurück zum Zitat Akhtar J, Kuang SK, Amin NS (2010) Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renew Energy 35(6):1220–1227CrossRef Akhtar J, Kuang SK, Amin NS (2010) Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water. Renew Energy 35(6):1220–1227CrossRef
5.
Zurück zum Zitat Arami-Niya A, Abnisa F, Sahfeeyan MS, Daud WW, Sahu JN (2011) Optimization of synthesis and characterization of palm shell-based bio-char as a by-product of bio-oil production process. BioResources 7(1):0246–0264 Arami-Niya A, Abnisa F, Sahfeeyan MS, Daud WW, Sahu JN (2011) Optimization of synthesis and characterization of palm shell-based bio-char as a by-product of bio-oil production process. BioResources 7(1):0246–0264
6.
Zurück zum Zitat Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875CrossRef Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875CrossRef
7.
Zurück zum Zitat Centi G, Lanzafame P, Perathoner S (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167(1):14–30CrossRef Centi G, Lanzafame P, Perathoner S (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167(1):14–30CrossRef
8.
Zurück zum Zitat Chew TL, Bhatia S (2008) Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour Technol 99(17):7911–7922CrossRef Chew TL, Bhatia S (2008) Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery. Bioresour Technol 99(17):7911–7922CrossRef
9.
Zurück zum Zitat Cunha JA, Pereira MM, Valente LM, De la Piscina PR, Homs N, Santos MRL (2011) Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass Bioenergy 35(5):2106–2116CrossRef Cunha JA, Pereira MM, Valente LM, De la Piscina PR, Homs N, Santos MRL (2011) Waste biomass to liquids: Low temperature conversion of sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. Biomass Bioenergy 35(5):2106–2116CrossRef
10.
Zurück zum Zitat Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383CrossRef Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383CrossRef
11.
Zurück zum Zitat Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841CrossRef Goh CS, Tan KT, Lee KT, Bhatia S (2010) Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol 101(13):4834–4841CrossRef
12.
Zurück zum Zitat Hasegawa I, Tabata K, Okuma O, Mae K (2004) New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy Fuel 18(3):755–760CrossRef Hasegawa I, Tabata K, Okuma O, Mae K (2004) New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy Fuel 18(3):755–760CrossRef
13.
Zurück zum Zitat Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24(6):725–735CrossRef Ibarra J, Munoz E, Moliner R (1996) FTIR study of the evolution of coal structure during the coalification process. Org Geochem 24(6):725–735CrossRef
14.
Zurück zum Zitat Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy 34(21):8799–8817CrossRef Kalinci Y, Hepbasli A, Dincer I (2009) Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy 34(21):8799–8817CrossRef
15.
Zurück zum Zitat Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031CrossRef Kang S, Li X, Fan J, Chang J (2012) Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind Eng Chem Res 51(26):9023–9031CrossRef
16.
Zurück zum Zitat Lapuerta M n, Hernandez JJ, Rodrı́guez J n (2004) Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy 27(4):385–391CrossRef Lapuerta M n, Hernandez JJ, Rodrı́guez J n (2004) Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenergy 27(4):385–391CrossRef
17.
Zurück zum Zitat Liu Z, Quek A, Kent Hoekman S, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949CrossRef Liu Z, Quek A, Kent Hoekman S, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949CrossRef
18.
Zurück zum Zitat Marx S, Chiyanzu I, Piyo N (2014) Influence of reaction atmosphere and solvent on biochar yield and characteristics. Bioresour Technol 164:177–183CrossRef Marx S, Chiyanzu I, Piyo N (2014) Influence of reaction atmosphere and solvent on biochar yield and characteristics. Bioresour Technol 164:177–183CrossRef
19.
Zurück zum Zitat Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010a) Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of catalysts. Bioresour Technol 101(2):745–751CrossRef Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010a) Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of catalysts. Bioresour Technol 101(2):745–751CrossRef
20.
Zurück zum Zitat Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010b) Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: an optimisation study using response surface methodology. Bioresour Technol 101(23):9335–9341CrossRef Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010b) Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: an optimisation study using response surface methodology. Bioresour Technol 101(23):9335–9341CrossRef
21.
Zurück zum Zitat Minowa T, Kondo T, Sudirjo ST (1998) Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenergy 14(5):517–524CrossRef Minowa T, Kondo T, Sudirjo ST (1998) Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenergy 14(5):517–524CrossRef
22.
Zurück zum Zitat Mohammed M, Salmiaton A, Wan Azlina W, Mohamad Amran M (2012) Gasification of oil palm empty fruit bunches: a characterization and kinetic study. Bioresour Technol 110:628–636CrossRef Mohammed M, Salmiaton A, Wan Azlina W, Mohamad Amran M (2012) Gasification of oil palm empty fruit bunches: a characterization and kinetic study. Bioresour Technol 110:628–636CrossRef
23.
Zurück zum Zitat Nizamuddin S, Jayakumar N, Sahu J, Ganesan P, Bhutto A, Mubarak N (2015) Hydrothermal carbonization of oil palm shell. Korean J Chem Eng:1–9 Nizamuddin S, Jayakumar N, Sahu J, Ganesan P, Bhutto A, Mubarak N (2015) Hydrothermal carbonization of oil palm shell. Korean J Chem Eng:1–9
24.
Zurück zum Zitat Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97CrossRef Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97CrossRef
25.
Zurück zum Zitat Ofori-Boateng C, Lee KT, Saad B (2014) A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization. Energy Convers Manag 81:192–200CrossRef Ofori-Boateng C, Lee KT, Saad B (2014) A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization. Energy Convers Manag 81:192–200CrossRef
26.
Zurück zum Zitat Pala M, Kantarli IC, Buyukisik HB, Yanik J (2014) Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol 161:255–262CrossRef Pala M, Kantarli IC, Buyukisik HB, Yanik J (2014) Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour Technol 161:255–262CrossRef
27.
Zurück zum Zitat Park J, Won SW, Mao J, Kwak IS, Yun Y-S (2010) Recovery of Pd (II) from hydrochloric solution using polyallylamine hydrochloride-modified< i> Escherichia coli</i> biomass. J Hazard Mater 181(1):794–800CrossRef Park J, Won SW, Mao J, Kwak IS, Yun Y-S (2010) Recovery of Pd (II) from hydrochloric solution using polyallylamine hydrochloride-modified< i> Escherichia coli</i> biomass. J Hazard Mater 181(1):794–800CrossRef
28.
Zurück zum Zitat Parshetti GK, Chowdhury S, Balasubramanian R (2014) Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour Technol 161:310–319CrossRef Parshetti GK, Chowdhury S, Balasubramanian R (2014) Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour Technol 161:310–319CrossRef
29.
Zurück zum Zitat Peng J, Chen P, Lou H, Zheng X (2009) Catalytic upgrading of bio-oil by HZSM-5 in sub-and super-critical ethanol. Bioresour Technol 100(13):3415–3418CrossRef Peng J, Chen P, Lou H, Zheng X (2009) Catalytic upgrading of bio-oil by HZSM-5 in sub-and super-critical ethanol. Bioresour Technol 100(13):3415–3418CrossRef
30.
Zurück zum Zitat Sabzoi NY, Jayakumar EK, Sahu NS, Ganesan JN, Mubarak P, Mazari NM, Shaukat A (2015) An optimisation study for catalytic hyfrolysis of oil palm shell using response surface methodology. J Oil Palm Res 47(4):339–351 Sabzoi NY, Jayakumar EK, Sahu NS, Ganesan JN, Mubarak P, Mazari NM, Shaukat A (2015) An optimisation study for catalytic hyfrolysis of oil palm shell using response surface methodology. J Oil Palm Res 47(4):339–351
31.
Zurück zum Zitat Shuit SH, Tan KT, Lee KT, Kamaruddin A (2009) Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy 34(9):1225–1235CrossRef Shuit SH, Tan KT, Lee KT, Kamaruddin A (2009) Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy 34(9):1225–1235CrossRef
32.
Zurück zum Zitat Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35(12):5406–5411CrossRef Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35(12):5406–5411CrossRef
33.
Zurück zum Zitat Sun P, Heng M, Sun S, Chen J (2010) Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35(12):5421–5429CrossRef Sun P, Heng M, Sun S, Chen J (2010) Direct liquefaction of paulownia in hot compressed water: Influence of catalysts. Energy 35(12):5421–5429CrossRef
34.
Zurück zum Zitat Tan JP, Luthfi AAI, Manaf SFA, Wu TY, Jahim JM (2018) Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. J CO2 Utiliz 26:595–601CrossRef Tan JP, Luthfi AAI, Manaf SFA, Wu TY, Jahim JM (2018) Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. J CO2 Utiliz 26:595–601CrossRef
35.
Zurück zum Zitat Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sust Energ Rev 40:673–687CrossRef Tekin K, Karagöz S, Bektaş S (2014) A review of hydrothermal biomass processing. Renew Sust Energ Rev 40:673–687CrossRef
36.
Zurück zum Zitat Tye YY, Lee KT, Abdullah WNW, Leh CP (2011) Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: status, potential and future prospects. Renew Sust Energ Rev 15(9):4521–4536CrossRef Tye YY, Lee KT, Abdullah WNW, Leh CP (2011) Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: status, potential and future prospects. Renew Sust Energ Rev 15(9):4521–4536CrossRef
37.
Zurück zum Zitat Zhang T, Walawender WP, Fan L, Fan M, Daugaard D, Brown R (2004) Preparation of activated carbon from forest and agricultural residues through CO< sub> 2</sub> activation. Chem Eng J 105(1):53–59CrossRef Zhang T, Walawender WP, Fan L, Fan M, Daugaard D, Brown R (2004) Preparation of activated carbon from forest and agricultural residues through CO< sub> 2</sub> activation. Chem Eng J 105(1):53–59CrossRef
38.
Zurück zum Zitat Zhu G, Zhu X, Fan Q, Wan X (2011) Recovery of biomass wastes by hydrolysis in sub-critical water. Resour Conserv Recycl 55(4):409–416CrossRef Zhu G, Zhu X, Fan Q, Wan X (2011) Recovery of biomass wastes by hydrolysis in sub-critical water. Resour Conserv Recycl 55(4):409–416CrossRef
39.
Zurück zum Zitat Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W (2009) Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnol Adv 27(5):578–582CrossRef Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W (2009) Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water. Biotechnol Adv 27(5):578–582CrossRef
Metadaten
Titel
Utilization of oil palm fronds for bio-oil and bio-char production using hydrothermal liquefaction technology
verfasst von
Ankit Jadhav
Israr Ahmed
A. G Baloch
Harshit Jadhav
Sabzoi Nizamuddin
M. T. H. Siddiqui
Humair Ahmed Baloch
Sundus Saeed Qureshi
Nabisab Mujawar Mubarak
Publikationsdatum
07.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 5/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00517-y

Weitere Artikel der Ausgabe 5/2021

Biomass Conversion and Biorefinery 5/2021 Zur Ausgabe